Exogenous nitric oxide delays salt-induced leaf senescence in cotton (Gossypium hirsutum L.)

文献类型: 外文期刊

第一作者: Kong, Xiangqiang

作者: Kong, Xiangqiang;Wang, Tao;Li, Weijiang;Tang, Wei;Zhang, Dongmei;Dong, Hezhong;Wang, Tao;Dong, Hezhong

作者机构:

关键词: Cotton;Leaf senescence;Salt stress;Gene expression;ABA;Cytokinin

期刊名称:ACTA PHYSIOLOGIAE PLANTARUM ( 影响因子:2.354; 五年影响因子:2.711 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Nitric oxide (NO) is a signaling molecule which plays an important role in delaying leaf senescence and increasing abiotic stress tolerance, but it is not clear if and how exogenous NO delays salt-induced leaf senescence in cotton. In this study, uniform cotton seedlings with five true main-stem leaves were cultured in hydroponics for 20 days and subjected to 150 mM NaCl. Seedlings were then treated with foliar spray of 300 mu M sodium nitroprusside (SNP), a nitric oxide donor, and those with water spray were used as control. The effects of SNP on leaf senescence and expression of senescence-related genes were examined. Foliar spray with SNP significantly delayed leaf senescence in terms of the increased chlorophyll (Chl) content, photosynthetic (Pn) rate and expression of LHCB gene at 22 days after salt stress (DAS). The SNP significantly (P < 0.05) increased the expression of SOS1 and NHX1 genes and K+ content in leaves, but decreased leaf Na+ content. It also reduced (p < 0.05) the expression of ABA biosynthesis genes, NCED2, NCED9, and ABA content but increased the expression of cytokinin biosynthesis gene, IPT1 and ZR and iPA contents at 22 DAS. The overall results suggest that the delay in saltinduced leaf senescence by SNP was due to marked decrease in Na+ and ABA contents and increase in K+ and cytokinin through regulation of the expression of SOS1, NHX1, NCED2, NCED9 and IPT1 genes under salt stress. Foliar spray with SNP can be potentially useful in delaying leaf senescence, thereby increasing the economic yield of cotton under salt stress.

分类号: Q94

  • 相关文献

[1]Soaking in H2O2 regulates ABA biosynthesis and GA catabolism in germinating cotton seeds under salt stress. Kong, Xiangqiang,Luo, Zhen,Zhang, Yanjun,Li, Weijiang,Dong, Hezhong.

[2]Removal of early fruiting branches impacts leaf senescence and yield by altering the sink/source ratio of field-grown cotton. Chen, Yizhen,Dong, Hezhong,Chen, Yizhen,Kong, Xiangqiang,Dong, Hezhong,Kong, Xiangqiang,Dong, Hezhong. 2018

[3]Isolation and expression profiling of GhNAC transcription factor genes in cotton (Gossypium hirsutum L.) during leaf senescence and in response to stresses. Syed Tariq Shah,Chaoyou Pang,Shuli Fan,Meizhen Song,Saima Arain,Shuxun Yu.

[4]Transcriptome Profiling Reveals Auxin and Cytokinin Regulating Somatic Embryogenesis in Different Sister Lines of Cotton Cultivar CCRI24. Xu Zhenzhen. 2013

[5]Effects of Soil Salinity and Plant Density on Yield and Leaf Senescence of Field-Grown Cotton. Zhang, H. J.,Dong, H. Z.,Li, W. J.,Zhang, D. M.,Zhang, H. J.. 2012

[6]Yield, quality and leaf senescence of cotton grown at varying planting dates and plant densities in the Yellow River Valley of China. Dong, HZ,Li, WJ,Tang, W,Li, ZH,Zhang, DM,Niu, YH. 2006

[7]Effects of cotton rootstock on endogenous cytokinins and abscisic acid in xylem sap and leaves in relation to leaf senescence. Dong, Hezhong,Li, Weijiang,Zhang, Dongmei,Dong, Hezhong,Niu, Yuehua. 2008

[8]Global analysis of the Gossypium hirsutum L. Transcriptome during leaf senescence by RNA-Seq. Min Lin,Chaoyou Pang,Shuli Fan,Meizhen Song,Hengling Wei,Shuxun Yu. 2015

[9]Effects of early-fruit removal on endogenous cytokinins and abscisic acid in relation to leaf senescence in cotton. Dong, Hezhong,Niu, Yuehua,Kong, Xiangqiang,Luo, Zhen.

[10]Yield and economic benefits of late planted short-season cotton versus full-season cotton relayed with garlic. Lu, Hequan,Dai, Jianlong,Li, Weijiang,Tang, Wei,Zhang, Dongmei,Eneji, A. Egrinya,Dong, Hezhong.

[11]Arabidopsis LOS5 Gene Enhances Chilling and Salt Stress Tolerance in Cucumber. Liu Li-ying,Duan Liu-sheng,Zhang Jia-chang,Zhang Xiao-lan,Zhang Zhen-xian,Ren Hua-zhong,Mi Guo-quan. 2013

[12]Homologous HAP5 subunit from Picea wilsonii improved tolerance to salt and decreased sensitivity to ABA in transformed Arabidopsis. Li, Lingli,Wei, Jing,Huang, Guixue,Zhang, Dun,Liu, Yong,Zhang, Lingyun,Yu, Yanli.

[13]Calcium-dependent protein kinase 21 phosphorylates 14-3-3 proteins in response to ABA signaling and salt stress in rice. Chen, Yixing,Zhou, Xiaojin,Chang, Shu,Chu, Zhilin,Wang, Hanmeng,Han, Shengcheng,Wang, Yingdian,Zhou, Xiaojin.

[14]H2O2 and ABA signaling are responsible for the increased Na+ efflux and water uptake in Gossypium hirsutum L. roots in the non-saline side under non-uniform root zone salinity. Kong, Xiangqiang,Luo, Zhen,Dong, Hezhong,Eneji, A. Egrinya,Li, Weijiang.

[15]Activation of ABA Receptors Gene GhPYL9-11A Is Positively Correlated with Cotton Drought Tolerance in Transgenic Arabidopsis. Liang, Chengzhen,Liu, Yan,Li, Yanyan,Meng, Zhigang,Yan, Rong,Zhu, Tao,Wang, Yuan,Kang, Shujing,Abid, Muhammad Ali,Malik, Waqas,Sun, Guoqing,Guo, Sandui,Zhang, Rui,Yan, Rong,Malik, Waqas. 2017

[16]Endogenous hormones and expression of senescence-related genes in different senescent types of maize. He, P,Osaki, M,Takebe, M,Shinano, T,Wasaki, J. 2005

[17]Study on DNA Cytosine Methylation of Cotton (Gossypium hirsutum L.) Genome and Its Implication for Salt Tolerance. ZHAO Yun-lei,YU Shu-xun,YE Wu-wei,WANG Hong-mei,WANG Jun-juan,FANG Bao-xing. 2010

[18]Epigenetic mechanisms of salt tolerance and heterosis in Upland cotton (Gossypium hirsutum L.) revealed by methylation-sensitive amplified polymorphism analysis. Baohua Wang,Mi Zhang,Rong Fu,Xiaowei Qian,Ping Rong,Yan Zhang,Peng Jiang,Junjuan Wang,Xuke Lu,Delong Wang,Wuwei Ye,Xinyu Zhu.

[19]Analysis of methylation-sensitive amplified polymorphism in different cotton accessions under salt stress based on capillary electrophoresis. Baohua Wang,Rong Fu,Mi Zhang,Zhenqian Ding,Lei Chang,Xinyu Zhu,Yafeng Wang,Baoxiang Fan,Wuwei Ye,Youlu Yuan.

[20]Relative contribution of Na+/K+ homeostasis, photochemical efficiency and antioxidant defense system to differential salt tolerance in cotton (Gossypium hirsutum L.) cultivars. Ning Wang,Wenqing Qiao,Huang, Qun,Yan, Gentu,Xiaohong Liu,Jianbin Shi,Qinghua Xu,Hong Zhou,Gentu Yan,Qun Huang. 2017

作者其他论文 更多>>