OsERF2 controls rice root growth and hormone responses through tuning expression of key genes involved in hormone signaling and sucrose metabolism

文献类型: 外文期刊

第一作者: Xiao, Guiqing

作者: Xiao, Guiqing;Lu, Xiangyang;Xiao, Guiqing;Qin, Hua;Zhou, Jiahao;Quan, Ruidang;Huang, Rongfeng;Zhang, Haiwen

作者机构:

关键词: OsERF2;Rice;Root growth;ABA;Ethylene;Sugar

期刊名称:PLANT MOLECULAR BIOLOGY ( 影响因子:4.076; 五年影响因子:4.89 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Root determines plant distribution, development progresses, stress response, as well as crop qualities and yields, which is under the tight control of genetic programs and environmental stimuli. Ethylene responsive factor proteins (ERFs) play important roles in plant growth and development. Here, the regulatory function of OsERF2 involved in root growth was investigated using the gain-function mutant of OsERF2 (nsf2857) and the artificial microRNA-mediated silenced lines of OsERF2 (Ami-OsERF2). nsf2857 showed short primary roots compared with the wild type (WT), while the primary roots of Ami-OsERF2 lines were longer than those of WT. Consistent with this phenotype, several auxin/cytokinin responsive genes involved in root growth were downregulated in nsf2857, but upregulated in Ami-OsERF2. Then, we found that nsf2857 seedlings exhibited decreased ABA accumulation and sensitivity to ABA and reduced ethylene-mediated root inhibition, while those were the opposite in Ami-ERF2 plants. Moreover, several key genes involved in ABA synthesis were downregulated in nsf2857, but unregulated in Ami-ERF2 lines. In addition, OsERF2 affected the accumulation of sucrose and UDPG by mediating expression of key genes involved in sucrose metabolism. These results indicate that OsERF2 is required for the control of root architecture and ABA- and ethylene-response by tuning expression of series genes involved in sugar metabolism and hormone signaling pathways.

分类号: Q946

  • 相关文献

[1]Graphene oxide modulates root growth of Brassica napus L. and regulates ABA and IAA concentration. Cheng, Fan,Liu, Yu-Feng,Xie, Ling-Li,Yuan, Cheng-Fei,Xu, Ben-Bo,Lu, Guang-Yuan,Zhang, Xue-Kun.

[2]Hydrogen peroxide modulates abscisic acid signaling in root growth and development in Arabidopsis. Bai Ling,Zhou Yun,Zhang XiaoRan,Song ChunPeng,Cao MingQing.

[3]Transcriptional Regulation of Genes Encoding Key Enzymes of Abscisic Acid Metabolism During Melon (Cucumis melo L.) Fruit Development and Ripening. Sun, Yufei,Chen, Pei,Duan, Chaorui,Wang, Yanping,Ji, Kai,Hu, Yin,Li, Qian,Dai, Shengjie,Wu, Yan,Luo, Hao,Sun, Liang,Leng, Ping,Tao, Pang. 2013

[4]Role of abscisic acid and ethylene in sweet cherry fruit maturation: molecular aspects. Ren, J.,Chen, P.,Dai, S. J.,Li, P.,Li, Q.,Ji, K.,Wang, Y. P.,Leng, P.,Ren, J.. 2011

[5]The Role of ABA in the Maturation and Postharvest Life of a Nonclimacteric Sweet Cherry Fruit. Luo, Hao,Dai, ShengJie,Ding, Ying,Sun, Yufei,Ji, Kai,Wang, Yanping,Li, Qian,Chen, Pei,Duan, Chaorui,Wang, Ya,Leng, Ping,Ren, Jie,Zhang, CaiXia,Li, Zhuang. 2014

[6]Characterization of a Glucose-, Xylose-, Sucrose-, and d-Galactose-Stimulated beta-Glucosidase from the Alkalophilic Bacterium Bacillus halodurans C-125. Xu, Hu,Chen, Jian-Min,Xu, Hu,Xiong, Ai-Sheng,Zhao, Wei,Tian, Yong-Sheng,Peng, Ri-He,Yao, Quan-Hong.

[7]Calcium-dependent protein kinase 21 phosphorylates 14-3-3 proteins in response to ABA signaling and salt stress in rice. Chen, Yixing,Zhou, Xiaojin,Chang, Shu,Chu, Zhilin,Wang, Hanmeng,Han, Shengcheng,Wang, Yingdian,Zhou, Xiaojin.

[8]Leucine-Rich Repeat Receptor-Like Kinase FON1 Regulates Drought Stress and Seed Germination by Activating the Expression of ABA-Responsive Genes in Rice. Feng, Lei,Gao, Zhenrui,Xiao, Guiqing,Huang, Rongfeng,Zhang, Haiwen,Huang, Rongfeng,Zhang, Haiwen.

[9]Isolation and characterization of a novel cDNA encoding ERF/AP2-type transcription factor OsAP25 from Oryza sativa L.. Fu, Xiao-Yan,Zhang, Zhen,Peng, Ri-He,Xiong, Ai-Sheng,Liu, Jin-Ge,Wu, Li-Juan,Gao, Feng,Zhu, Hong,Guo, Zhao-Kui,Yao, Quan-Hong. 2007

[10]Effects of salt stress on rice growth, development characteristics, and the regulating ways: A review. Hussain, Sajid,Zhang Jun-hua,Zhong Chu,Zhu Lian-feng,Cao Xiao-chuang,Yu Sheng-miao,James, Allen Bohr,Hu Ji-jie,Jin Qian-yu. 2017

[11]Isolated and characterization of a cDNA encoding ethylene-responsive element binding protein (EREBP)/AP2-type protein, RCBF2, in Oryza sativa L.. Liu, Jin-Ge,Zhang, Zhen,Qin, Qiu-Lin,Peng, Ri-He,Xiong, Ai-Sheng,Chen, Jian-Min,Xu, Fang,Zhu, Hong,Yao, Quan-Hong.

[12]Effects of Partial Rootzone Irrigation on Growth and Physiological Characteristics in Apple Trees and Water Use Efficiency. Wei, Q.,Wang, X.,Zhang, Qing,Zhang, Qiang,Liu, S.,Liu, J.. 2011

[13]Driving the expression of RAA1 with a drought-responsive promoter enhances root growth in rice, its accumulation of potassium and its tolerance to moisture stress. Chen, Guang,Li, Chaolei,Gao, Zhenyu,Zhang, Yu,Zhu, Li,Hu, Jiang,Ren, Deyong,Qian, Qian,Chen, Guang,Xu, Guohua. 2018

[14]NRAMP2, a trans-Golgi network-localized manganese transporter, is required for Arabidopsis root growth under manganese deficiency. Gao, Huiling,Xie, Wenxiang,Yang, Changhong,Xu, Jingyi,Huang, Chao-Feng,Gao, Huiling,Xie, Wenxiang,Yang, Changhong,Xu, Jingyi,Huang, Chao-Feng,Gao, Huiling,Xie, Wenxiang,Yang, Changhong,Xu, Jingyi,Huang, Chao-Feng,Li, Jingjun,Chen, Xi,Wang, Hua. 2018

[15]Poor post-silking kernel development limits summer maize yield in the North China Plain. Tao, Hongbin,Xia, Laikun,Xu, Lina,Lu, Lihua,Jin, Pengyu,Ming, Bo,Wang, Caicai,Wang, Pu,Xia, Laikun,Xu, Lina,Lu, Lihua,Wang, Caicai. 2015

[16]Influence of subsoil zinc on dry matter production, seed yield and distribution of zinc in oilseed rape genotypes differing in zinc efficiency. Grewal, HS,Lu, ZG,Graham, RD. 1997

[17]Use of Ginkgo biloba leaf compost for promoting soil properties and rooting of New Guinea impatiens cuttings. Si Weijia,Luan Yaning,Li Junyu,Mao Xiangfei.

[18]Root development and water uptake in winter wheat under different irrigation methods and scheduling for North China. Jha, Shiva K.,Gao, Yang,Liu, Hao,Huang, Zhongdong,Wang, Guangshuai,Liang, Yueping,Duan, Aiwang,Jha, Shiva K.,Wang, Guangshuai,Liang, Yueping.

[19]Superoxide radical and auxin are implicated in redistribution of root growth and the expression of auxin and cell-cycle genes in cadmium-stressed rice. Zhao, F. Y.,Hu, F.,Han, M. M.,Liu, W.,Zhang, S. Y..

[20]Phosphorus and magnesium interactively modulate the elongation and directional growth of primary roots in Arabidopsis thaliana (L.) Heynh. Niu, Yaofang,Yu, Jingquan,Niu, Yaofang,Zhang, Yongsong,Liang, Yongchao,Jin, Gulei,Li, Xin,Tang, Caixian.

作者其他论文 更多>>