A Ve homologous gene from Gossypium barbadense, Gbvdr3, enhances the defense response against Verticillium dahliae

文献类型: 外文期刊

第一作者: Chen, Tianzi

作者: Chen, Tianzi;Kan, Jialiang;Yang, Yuwen;Ling, Xitie;Chang, Youhong;Zhang, Baolong

作者机构:

关键词: Defense;Gbvdr3;Gossypium;Hypersensitive response;Verticillium wilt

期刊名称:PLANT PHYSIOLOGY AND BIOCHEMISTRY ( 影响因子:4.27; 五年影响因子:4.816 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The tomato Ve1 gene and several Ve1 homologues are involved in the resistance to Verticillium dahliae. Here, we report on another Ve homologous gene, Gbvdr3, from a Verticillium wilt-resistant cotton cultivar, Gossypium barbadense Hai7124, which has a 3207-bp region that encodes a predicted receptor like protein. Transient expression analyses indicated that Gbvdr3 is localized in the plasma membrane, and virus-induced gene silencing of Gbvdr3 compromised the resistance of Hai7124 cotton to a defoliating strain of V. dahliae, V991, but not to a non-defoliating strain, BP2. This resistance pattern was further confirmed by over-expression of Gbvdr3 in transgenic Arabidopsis, which significantly elevated the expression of the ethylene-regulated gene GST2, the ethylene- and jasmonic acid-regulated defense-related genes PR3 and PDF1.2, and the salicylic acid-regulated genes PR1 and PR5, but not the PR2 gene. It also triggered the accumulation of hydrogen peroxide and callose at early time points during infection by the V991 defoliating strain. In contrast, elevated accumulation of hydrogen peroxide or callose in Gbvdr3-expressed Arabidopsis leaves was not apparent under infection by the non-defoliating strain, BP2. These results suggested that Gbvdr3 is involved in the resistance to a unique spectrum of defoliating V. dahliae strains. (C) 2015 Elsevier Masson SAS. All rights reserved.

分类号: Q945`Q946

  • 相关文献

[1]Gbvdr6, a Gene Encoding a Receptor-Like Protein of Cotton (Gossypium barbadense), Confers Resistance to Verticillium Wilt in Arabidopsis and Upland Cotton. Yang, Yuwen,Ma, Zhengqiang,Yang, Yuwen,Ma, Zhengqiang,Yang, Yuwen,Chen, Tianzi,Ling, Xitie. 2018

[2]QTL mapping for fiber quality traits across multiple generations and environments in upland cotton. Fu-Ding Sun,Jian-Hong Zhang,Shu-Fang Wang,Wan-Kui Gong,Yu-Zhen Shi,Ai-Ying Liu,Jun-Wen Li,Ju-Wu Gong,Hai-Hong Shang,You-Lu Yuan.

[3]Highly virulent Beauveria bassiana strains against the two-spotted spider mite, Tetranychus urticae, show no pathogenicity against five phytoseiid mite species. Xu, Xuenong,Lei, Zhongren,Xie, Haicui,Li, Maoye. 2016

[4]Comparative Proteomic Analysis of Susceptible and Resistant Rice Plants during Early Infestation by Small Brown Planthopper. Chen, Jianping,Dong, Yan,Yang, Yong,Wang, Xuming,Yu, Chulang,Zhou, Jie,Yan, Chengqi,Chen, Jianping,Fang, Xianping,Fang, Xianping,Xue, Gang-Ping,Chen, Xian,Zhang, Weilin,Mei, Qiong,Fang, Wang. 2017

[5]Omics-Based Comparative Transcriptional Profiling of Two Contrasting Rice Genotypes during Early Infestation by Small Brown Planthopper. Zhang, Weilin,Yang, Ling,Ma, Bojun,Li, Mei,Yan, Chengqi,Chen, Jianping. 2015

[6]Characterization of HbEREBP1, a wound-responsive transcription factor gene in laticifers of Hevea brasiliensis Muell. Arg.. Chen, Yue-Yi,Wang, Li-Feng,Dai, Long-Jun,Yang, Shu-Guang,Tian, Wei-Min,Chen, Yue-Yi.

[7]DissectingthemaizedirectandindirectdefenseresponseagainstAsianCornBorer. 汪海,李圣彦,查象敏,朱莉,黄大昉,郎志宏. 2015

[8]CharacterizationofmousebrainmicroRNAsafterinfectionwithcyst-formingToxoplasmagondii. 徐民俊,DonghuiZhou,AlasdairJ.Nisbet,SiyangHuang,YifanFan,XingquanZhu. 2013

[9]Isolation and identification of a gene in response to rice blast disease in rice. Zheng, XW,Chen, XW,Zhang, XH,Lin, ZZ,Shang, JJ,Xu, JC,Zhai, WX,Zhu, LH.

[10]Overexpression of OsRRK1 Changes Leaf Morphology and Defense to Insect in Rice. Ma, Yinhua,Zhao, Yan,Shangguan, Xinxin,Shi, Shaojie,Zeng, Ya,Wu, Yan,Chen, Rongzhi,Zhu, Lili,Du, Bo,He, Guangcun,You, Aiqing. 2017

[11]Cloning, characterization and expression of the gene encoding polygalacturonase-inhibiting proteins (PGIPs) of peach [prunus persica (L.) Batch]. Liang, FS,Zhang, KC,Zhou, CJ,Kong, FN,Li, J,Wang, B.

[12]Crystal Structure Analysis and the Identification of Distinctive Functional Regions of the Protein Elicitor Mohrip2. Wang, Meifang,Zeng, Hongmei,Qiu, Dewen,Duan, Liangwei,Liu, Xinqi. 2016

[13]Mutational analysis of the Verticillium dahliae protein elicitor PevD1 identifies distinctive regions responsible for hypersensitive response and systemic acquired resistance in tobacco. Liu, Zhipeng,Liu, Wenxian,Zeng, Hongmei,Yang, Xiufen,Guo, Lihua,Qiu, Dewen. 2014

[14]Identification of phenolic compounds that suppress the virulence of Xanthomonas oryzae on rice via the type III secretion system. Tian, Fang,Li, Jianyu,Chen, Huamin,Yang, Fenghuan,He, Chenyang,Hutchins, William,Yuan, Xiaochen,Yang, Ching-Hong,Cui, Zining.

[15]Comparative Transcriptomic Analysis Reveals That Ethylene/H2O2-Mediated Hypersensitive Response and Programmed Cell Death Determine the Compatible Interaction of Sand Pear and Alternaria alternata. Wang, Hong,Lin, Jing,Chang, Youhong,Jiang, Cai-Zhong,Jiang, Cai-Zhong. 2017

[16]The purification and characterization of a novel hypersensitive-like response-inducing elicitor from Verticillium dahliae that induces resistance responses in tobacco. Yang, Xiufen,Zeng, Hongmei,Liu, Hua,Zhou, Tingting,Tan, Beibei,Yuan, Jingjing,Guo, Lihua,Qiu, Dewen.

[17]Elicitation of the hypersensitive responses in tabacco by a 10.6 kD proteinaceous elicitor from Phytophthora palmi. Cai, YY,Chen, J. 1999

[18]Plant ERD2-like proteins function as endoplasmic reticulum luminal protein receptors and participate in programmed cell death during innate immunity. Li, Sizhun,Xie, Ke,Zhang, Qiang,Wang, Yan,Tang, Yang,Liu, Dong,Liu, Yule,Hong, Yiguo,He, Chenyang. 2012

[19]Isolation and Characteristics of the CN Gene, a Tobacco Mosaic Virus Resistance N Gene Homolog, from Tobacco. Zhang, Gai-Yun,Guo, Jia-Ming,Xu, Tong-Wen,Chen, Xue-Ping,Chen, Ming,Li, Lian-Cheng,Xu, Zhao-Shi,Ma, You-Zhi. 2009

[20]Hrip1, a novel protein elicitor from necrotrophic fungus, Alternaria tenuissima, elicits cell death, expression of defence-related genes and systemic acquired resistance in tobacco. Kulye, Mahesh,Liu, Hua,Zhang, Yuliang,Zeng, Hongmei,Yang, Xiufen,Qiu, Dewen. 2012

作者其他论文 更多>>