Mapping and candidate gene analysis for a new top spikelet abortion mutant in rice

文献类型: 外文期刊

第一作者: Jiang, Shukun

作者: Jiang, Shukun;Zhang, Xijuan;Sun, Shichen;Jiang, Hui;Ding, Guohua;Wang, Tongtong;Bai, Liangming;Zhang, Fengming;Wang, Jiayu;Liu, Dan;Chen, Lili;Xu, Fan;Xu, Zhengjin

作者机构:

关键词: rice (Oryza sativa L.);panicle architecture;top spikelet abortion;mapping;candidate gene

期刊名称:PLANT BREEDING ( 影响因子:1.832; 五年影响因子:1.956 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Grain numbers is one of the determinations for rice yield and directly associated with spikelet numbers per panicle and its normal development. Lots of genes responsible for spikelet numbers and spikelet early development have been identified, but the molecular information about the spikelet development at later development is still limited. Here, we isolated a rice spikelet abnormal development mutant, which shows degenerated spikelet at the top panicle and named aborted top spikelet mutant 1(Ats1). The spikelets derived from the middle and bottom branches per panicle of Ats1 show normal development with those of wild type. However, a large number of branches and spikelets with arrested development were often observed only on apex panicle. The abnormality did not appear until the stage In8 when rachises elongate rapidly and reproductive organs get mature, based on observations through SEM analysis. The aborted spikelet could develop the complete floral organs with a pair of rudimentary glume, a pair of empty glume, two lodicule, six stamens and one carpel. But all these floral organs did not develop maturity. Genetic analysis on two F-2 populations indicated that the Ats1 was controlled by a single dominant gene. By using bulked segregant analysis of F-2 population developed from Ats1 crossing with Songjing6, ATS1 was mapped on chromosome 8 between RM3819 and RM5556. Then, the fine mapping was performed with 1078 F-2 population developed from Ats1 and IR36. The ATS1 locus was finely mapped in an 85.7kb region between RM22448 and STS8-2 with 8 genes according to the rice annotation project database. Sequence analysis of the candidate genes within the delimited region of the Ats1 and Akihikari showed two-nucleotide changes, including single-nucleotide substitutions corresponding to an amino acid substitution from asparagine to lysine acid in exons 3 and a 1-bp deletion resulting in a premature stop codon in exon 22 at the candidate gene, LOC_Os08g06480. A cleaved amplified polymorphic sequence (CAPS) marker, CAPS-ats1, was developed from the 1-bp deletion site. The complete cosegregation of the CAPS genotypes with the matching phenotypes were observed in the F-2 populations. This suggested that Os08g06480 is most likely the ATS1 gene. These results will provide more information for better understanding of the molecular mechanism governing top spikelet abortion within a short developmental period.

分类号: S3

  • 相关文献

[1]Involvement of 1-Methylcyclopropene in Plant Growth, Ethylene Production, and Synthase Activity of Inferior Spikelets in Hybrid Rice Differing in Panicle Architectures. Zhang, Junhua,Zhu, Lianfeng,Yu, Shengmiao,Jin, Qianyu,Zhang, Junhua.

[2]Identification and validation of a novel major QTL for harvest index in rice (Oryza sativa L.). Zhang, Shaohong,He, Xiuying,Zhao, Junliang,Cheng, Yongsheng,Chen, Yuehan,Yang, Tifeng,Dong, Jingfang,Wang, Xiaofei,Liu, Qing,Liu, Wei,Mao, Xingxue,Fu, Hua,Chen, Zhaoming,Liao, Yaoping,Liu, Bin,Zhang, Shaohong,He, Xiuying,Zhao, Junliang,Cheng, Yongsheng,Chen, Yuehan,Yang, Tifeng,Dong, Jingfang,Wang, Xiaofei,Liu, Qing,Liu, Wei,Mao, Xingxue,Fu, Hua,Chen, Zhaoming,Liao, Yaoping,Liu, Bin,Xie, Zhimei,Xie, Zhimei. 2017

[3]QTLs influencing panicle size detected in two reciprocal introgressive line (IL) populations in rice (Oryza sativa L.). Mei, HW,Xu, JL,Li, ZK,Yu, XQ,Guo, LB,Wang, YP,Ying, CS,Luo, LJ. 2006

[4]Over-expression of an S-domain receptor-like kinase extracellular domain improves panicle architecture and grain yield in rice. Zou, Xiaohua,Qin, Zhengrui,Zhang, Chunyu,Liu, Bin,Liu, Jun,Li, Hongyu,Zhao, Tao,Zhang, Chengsheng,Lin, Chentao.

[5]Identification of favorable SNP alleles and candidate genes for traits related to early maturity via GWAS in upland cotton. Junji Su,Chaoyou Pang,Hengling Wei,Libei Li,Bing Liang,Caixiang Wang,Meizhen Song,Hantao Wang,Shuqi Zhao,Xiaoyun Jia,Guangzhi Mao,Long Huang,Dandan Geng,Chengshe Wang,Shuli Fan. 2016

[6]Association of Candidate Genes With Submergence Response in Perennial Ryegrass. Wang, Xicheng,Wang, Xicheng,Jiang, Yiwei,Pei, Zhongyou,Liu, Huifen,Jiang, Yiwei,Zhao, Xiongwei,Xiao, Xiangye,Zhao, Xiongwei,Song, Xin. 2017

[7]Genome-wide association study discovered candidate genes of Verticillium wilt resistance in upland cotton (Gossypium hirsutum L.). Li, Tinggang,Ma, Xuefeng,Li, Nanyang,Zhou, Lei,Gui, Yuejing,Bao, Yuming,Chen, Jieyin,Dai, Xiaofeng,Liu, Zheng,Han, Huanyong. 2017

[8]Up-regulation of NLRC5 and NF-kappa B signaling pathway in carrier chickens challenged with Salmonella enterica Serovar Pullorum at different persistence periods. Liu, Xiangping,Sheng, Zhongwei,Dou, Xinhong,Wang, Kehua,Ma, Teng,Wang, Hongzhi,Li, Zhiteng,Pan, Zhiming,Chang, Guobin,Chen, Guohong. 2015

[9]Analysis of weighted co-regulatory networks in maize provides insights into new genes and regulatory mechanisms related to inositol phosphate metabolism. Zhang, Shaojun,Yang, Wenzhu,Zhao, Qianqian,Zhou, Xiaojin,Jiang, Ling,Ma, Shuai,Liu, Xiaoqing,Li, Ye,Zhang, Chunyi,Fan, Yunliu,Chen, Rumei,Zhang, Shaojun,Yang, Wenzhu,Zhao, Qianqian,Zhou, Xiaojin,Jiang, Ling,Liu, Xiaoqing,Li, Ye,Zhang, Chunyi,Fan, Yunliu,Chen, Rumei. 2016

[10]Genome-wide association study of seedling stage salinity tolerance in temperate japonica rice germplasm. Batayeva, Dariga,Dyuskalieva, Gulzhamal,Labaco, Benedick,Ye, Changrong,Vergara, Georgina,Reinke, Russell,Leung, Hei,Ye, Changrong,Li, Xiaolin,Usenbekov, Bakdaulet,Rysbekova, Aiman. 2018

[11]An integrated analysis of QTL mapping and RNA sequencing provides further insights and promising candidates for pod number variation in rapeseed (Brassica napus L.). Ye, Jiang,Yang, Yuhua,Shi, Jiaqin,Zhan, Jiepeng,Wang, Xinfa,Liu, Guihua,Wang, Hanzhong,Chen, Bo,Luo, Meizhong. 2017

[12]Numerous genetic loci identified for drought tolerance in the maize nested association mapping populations. Li, Chunhui,Li, Yongxiang,Wu, Xun,Zhang, Dengfeng,Shi, Yunsu,Song, Yanchun,Wang, Tianyu,Li, Yu,Sun, Baocheng,Liu, Cheng,Buckler, Edward S.,Buckler, Edward S.,Zhang, Zhiwu. 2016

[13]Joint-linkage mapping and GWAS reveal extensive genetic loci that regulate male inflorescence size in maize. Wu, Xun,Li, Yongxiang,Shi, Yunsu,Song, Yanchun,Zhang, Dengfeng,Li, Chunhui,Li, Yu,Wang, Tianyu,Buckler, Edward S.,Buckler, Edward S.,Zhang, Zhiwu,Wu, Xun,Zhang, Zhiwu.

[14]Genome-wide study refines the quantitative trait locus for number of ribs in a Large White x Minzhu intercross pig population and reveals a new candidate gene. Zhang, Long-Chao,Yue, Jing-Wei,Pu, Lei,Wang, Li-Gang,Liu, Xin,Liang, Jing,Yan, Hua,Zhao, Ke-Bin,Li, Na,Shi, Hui-Bi,Zhang, Yue-Bo,Wang, Li-Xian.

[15]Identification and validation of major QTLs and epistatic interactions for seed oil content in soybeans under multiple environments based on a high-density map. Qi Zhaoming,Zhang Xiaoying,Qi Huidong,Xin Dawei,Han Xue,Jiang Hongwei,Zhang Zhanguo,Zhang Jinzhu,Zhu Rongsheng,Hu Zhenbang,Liu Chunyan,Wu Xiaoxia,Chen Qingshan,Che Daidi,Han Xue,Jiang Hongwei,Liu Chunyan,Yin Zhengong.

[16]Polymorphisms associated with egg number at 300 days of age in chickens. Xu, H. P.,Zeng, H.,Zhang, D. X.,Jia, X. L.,Nie, Q. H.,Zhang, X. Q.,Luo, C. L.,Fang, M. X.. 2011

[17]Genetics and fine mapping of a purple leaf gene, BoPr, in ornamental kale (Brassica oleracea L. var. acephala). Liu, Xiao-ping,Gao, Bao-zhen,Han, Feng-qing,Fang, Zhi-yuan,Yang, Li-mei,Zhuang, Mu,Lv, Hong-hao,Liu, Yu-mei,Li, Zhan-sheng,Cai, Cheng-cheng,Yu, Hai-long,Li, Zhi-yuan,Zhang, Yang-yong. 2017

[18]Identification, Mapping, and Molecular Marker Development for Rgsr8.1: A New Quantitative Trait Locus Conferring Resistance to Gibberella Stalk Rot in Maize (Zea mays L.). Song, Jun,Du, Wen-Ping,Xu, Li-Yuan,Jiang, Yun,Zhang, Jie,Xiang, Xiao-Li,Yu, Gui-Rong. 2017

[19]Quantitative trait loci for the number of vertebrae on Sus scrofa chromosomes 1 and 7 independently influence the numbers of thoracic and lumbar vertebrae in pigs. Zhang Long-chao,Liu Xin,Liang Jing,Yan Hua,Zhao Ke-bin,Li Na,Pu Lei,Shi Hui-bi,Zhang Yue-bo,Wang Li-gang,Wang Li-xian. 2015

[20]Zea mays NAC transcription factor family members: their genomic characteristics and relationship with drought stress. Li, Liang,Ma, Yiwen,Li, Liang,Ma, Yiwen,Zhang, Shihuang,Hao, Zhuanfang,Li, Xinhai. 2015

作者其他论文 更多>>