Enhanced Germicidal Efficacy by Co-Delivery of Validamycin and Hexaconazole with Methoxy Poly(ethylene glycol)-Poly(lactide-co-glycolide) Nanoparticles

文献类型: 外文期刊

第一作者: Zhang, Jiakun

作者: Zhang, Jiakun;Zhao, Caiyan;Wu, Yan;Zhang, Jiakun;Liu, Yajing;Cao, Lidong;Huang, Qiliang

作者机构:

关键词: Co-Delivery;Nanoparticles;mPEG-PLGA;Validamycin;Hexaconazole

期刊名称:JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY ( 影响因子:1.134; 五年影响因子:0.999 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Co-delivery system has been proposed in pharmaceutical field aim to synergistic treatments. The combination formulation is also important in traditional pesticides formulations based on the low pest resistance risk and wide fungicidal spectrum. However, co-delivery nanoparticles (NPs) tend to be more environmentally friendly for the sustained-release behaviour and none of toxic organic solvents or dusts. Hence, we constructed co-delivery NPs which could delivery two kinds of pesticides, which function was similar with pesticides combination formulation. The co-delivery NPs of validamycin and hexaconazole were prepared with the amphiphilic copolymer methoxy poly(ethylene glycol)poly(lactide-co-glycolide) (mPEG-PLGA) used an improved double emulsion method. The chemical structure of mPEG-PLGA copolymer was confirmed using fourier transform infrared spectroscopy (FT-IR), and nuclear magnetic resonance spectroscopy (NMR). The co-delivery NPs all exhibited good size distribution and held sustained-release property. Germicidal efficacy of the co-delivery NPs against Rhizoctonia cerealis was also studied. The germicidal efficacy of co-delivery NPs against Rhizoctonia cerealis was better than that of traditional pesticides formulation. In addition, co-delivery NPs showed a lasting impact against Rhizoctonia cerealis.

分类号: TB383

  • 相关文献

[1]Size-Dependent Effect of Prochloraz-Loaded mPEG-PLGA Micro- and Nanoparticles. Zhang, Jiakun,Liu, Yajing,Cao, Lidong,Huang, Qiliang,Zhang, Jiakun,Zhao, Caiyan,Wu, Yan.

[2]Size-dependent effect of prochloraz-loaded mPEG-PLGA micro-and nanoparticles. Huang, Qiliang,Zhang, Jiakun,Cao, Lidong. 2014

[3]Enantioselective Residue Dissipation of Hexaconazole in Cucumber (Cucumis sativus L.), Head Cabbage (Brassica oleracea L. var. caulorapa DC.), and Soils. Wang, Xinquan,Zhang, Hu,Xu, Hao,Wang, Xiangyun,Wu, Changxing,Li, Zhen,Wang, Qiang,Yang, Hongda. 2012

[4]Studies of enantiomeric degradation of the triazole fungicide hexaconazole in tomato, cucumber, and field soil by chiral liquid chromatography-tandem mass spectrometry. Dong, Fengshou,Liu, Xingang,Xu, Jun,Chen, Xiu,Han, Yongtao,Liang, Xuyang,Zheng, Yongquan.

[5]Effects of hexaconazole application on soil microbes community and nitrogen transformations in paddy soils. Xu, Jun,Wu, Xiaohu,Dong, Fengshou,Liu, Xingang,Tian, Chunyan,Zheng, Yongquan.

[6]Dissipation behavior of hexaconazole and kresoxim-methyl residues in ginseng and soil under field conditions. Wang, Yan,Liu, Chang,Gao, Jie,Wang, Chunwei,Cui, Lili,Li, Aijun. 2015

[7]Monitoring tryptophan metabolism after exposure to hexaconazole and the enantioselective metabolism of hexaconazole in rat hepatocytes in vitro. Wang, Yao,Zhu, Wentao,Wang, Xinru,Zhang, Ping,Yan, Jin,Zhou, Zhiqiang,Qiu, Jing.

[8]Preparation and characterization of alpha-galactosidase-loaded chitosan nanoparticles for use in foods. Liu, Yong,Li, Yanli,Xu, Shaochun,Tang, Jiangwu,Xu, Yaoxing,Sun, Yan,Ding, Juntao. 2011

[9]Characteration of Protein Loaded Chitosan Nanoparticles at Different pH Values. Liu, Yong,Li, Yanli,Xu, Shaochun,Xu, Yaoxing,Sun, Yan. 2011

[10]Development of Ligand Incorporated Chitosan Nanoparticles for the Selective Delivery of 5-Fluorouracil to Colon. Li, Puwang,She, F. H.,Kong, L. X.,Li, Puwang,Li, Puwang,Peng, Zheng. 2011

[11]Green synthesis of gold nanoparticles using Citrus maxima peel extract and their catalytic/antibacterial activities. Yuan, Chun-Gang,Huo, Can,Gui, Bing,Cao, Wei-Ping. 2017

[12]Fast and selective recognizes polysaccharide by surface molecularly imprinted film coated onto aldehyde-modified magnetic nanoparticles. Huang, Weiwei,Yang, Xin,Zhao, Song,Zhang, Min,Hu, Xinglong,Wang, Jing,Zhao, Haitian,Huang, Weiwei,Yang, Xin,Zhang, Min,Wang, Jing,Huang, Weiwei.

[13]Chitosan-Modified PLGA Nanoparticles with Versatile Surface for Improved Drug Delivery. Wang, Yichao,Li, Puwang,Kong, Lingxue,Li, Puwang. 2013

[14]Utilization of Chitosan-Lactide Copolymer Nanoparticles as Controlled Release Pesticide Carrier for Pyraclostrobin Against Colletotrichum gossypii Southw. Huang, Qi-Liang,Xu, Lei,Cao, Li-Dong,Li, Feng-Min,Wang, Xiang-Jing.

[15]Impact of Metal and Metal Oxide Nanoparticles on Plant: A Critical Review. Rastogi, Anshu,Rastogi, Anshu,Zivcak, Marek,Sytar, Oksana,Brestic, Marian,Sytar, Oksana,Kalaji, Hazem M.,Kalaji, Hazem M.,He, Xiaolan,Mbarki, Sonia. 2017

[16]Formulation Optimization For High Drug Loading Colonic Drug Delivery Carrier. Wang, Yichao,Li, Puwang,Kong, Lingxue,Peng, Zheng,Luo, Yongyue. 2010

[17]Tangeretin-loaded protein nanoparticles fabricated from zein/beta-lactoglobulin: Preparation, characterization, and functional performance. Chen, Jingjing,Zheng, Jinkai,McClements, David Julian,Xiao, Hang,Zheng, Jinkai. 2014

[18]The use of human umbilical vein endothelial cells (HUVECs) as an in vitro model to assess the toxicity of nanoparticles to endothelium: a review. Cao, Yi,Gong, Yu,Zhou, Yiwei,Fang, Xin,Zhang, Cao,Li, Yining,Li, Juan,Cao, Yi,Liu, Liangliang,Zhou, Yiwei,Fang, Xin. 2017

[19]Epigallocatechin gallate-beta-lactoglobulin nanoparticles improve the antitumor activity of EGCG for inducing cancer cell apoptosis. Wu, Min,Jin, Peng,Qin, Dingkui,Wang, Kai,Du, Qizhen,Jin, Jianchang,Xu, Yongquan,Yin, Junfeng. 2017

[20]Analysis of Small Molecule Compounds by Matrix Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry with ZnO, CuO and NiO Nanoparticles as Matrix. Yang Meng-Rui,Wang Min,Tang Xiao-Yan,Zhou Jian,Mao Xue-Fei. 2015

作者其他论文 更多>>