Reduction, methylation, and translocation of arsenic in Panax notoginseng grown under field conditions in arsenic-contaminated soils

文献类型: 外文期刊

第一作者: Ma, Jie

作者: Ma, Jie;Mi, Yanhua;Li, Qiwan;Chen, Lu;Du, Lijuan;He, Lizhong;Ma, Jie;Lei, Mei

作者机构:

关键词: Panax notoginseng;Arsenic species;Soil;Reduction;Methylation;Translocation

期刊名称:SCIENCE OF THE TOTAL ENVIRONMENT ( 影响因子:7.963; 五年影响因子:7.842 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Variations in arsenic (As) species in Panax notoginseng grown under field conditions remain understudied compared with those under greenhouse conditions. In the present study, soil and plant samples were collected from Wenshan Zhuang and Miao Autonomous Prefecture, Yunnan Province, which is the main production area of P. notoginseng in China, to identify As species in the soil and plant tissues and further assess effect of As toxic stress on As transformation and translocation in P. notoginseng. The results showed that arsenate (As(V)) was almost exclusively identified in the soil, while arsenite (As(III)) and monomethylarsonic acid (MMA) were detected in high proportions in plant tissues, suggesting that As(V) could be reduced and subsequently methylated in the plant body, mainly in the root. The reduction and methylation of As in the root of P. notoginseng were promoted by low As toxic stress, but were impeded by high As toxic stress. Arsenic(III) and MMA could rapidly translocate upwards in P notoginseng. In addition, the translocation of total As, As(III), and MMA from the root to the rhizome was a response to As toxic stress, and the translocation rate increased with the increasing As concentration in the taproot. This study provides new insights into the detoxification mechanism of P. notoginseng grown in As contaminated soils and the control of As during cultivation. (C) 2016 Elsevier B.V. All rights reserved.

分类号: X1

  • 相关文献

[1]Arsenate reduction and methylation in the cells of Trichoderma asperellum SM-12F1, Penicillium janthinellum SM-12F4, and Fusarium oxysporum CZ-8F1 investigated with X-ray absorption near edge structure. Su, S. M.,Zeng, X. B.,Li, L. F.,Duan, R.,Bai, L. Y.,Li, A. G.,Wang, J.,Jiang, S.. 2012

[2]Manganese availability and microbial populations in the rhizosphere of wheat genotypes differing in tolerance to Mn deficiency. Marschner, P,Fu, QL,Rengel, Z.

[3]Impact of roxarsone on the UASB reactor performance and its degradation. Shui, Mengchuan,Tang, Rui,Yuan, Shoujun,Wang, Wei,Hu, Zhenhu,Ji, Feng,Zhan, Xinmin,Wang, Wei,Hu, Zhenhu. 2016

[4]External inorganic N source enhances the uptake of As species in garland chrysanthemum (C. coronarium) amended with chicken manure bearing roxarsone and its metabolites. Huang, Lianxi,He, Zhaohuan,Zhou, Changmin,Li, Guoliang,Yang, Baomei,Deng, Xiancai. 2013

[5]Uptake of arsenic species by turnip (Brassica rapa L.) and lettuce (Lactuca sativa L.) treated with roxarsone and its metabolites in chicken manure. Yao, Li Xian,He, Zhao Huan,Zhou, Chang Min,Li, Guo Liang,Yang, Bao Mei,Huang, Lian Xi,Yao, Li Xian,He, Zhao Huan,Zhou, Chang Min,Li, Guo Liang,Yang, Bao Mei,Li, Ying Fen. 2013

[6]Occurrence of Arsenic Impurities in Organoarsenics and Animal Feeds. .

[7]Effect of diacylglycerol on body weight: a meta-analysis. Xu, Tongcheng,Zhang, Zhiguo,Li, Duo,Xu, Tongcheng,Li, Xia,Ma, Xiaohang. 2008

[8]Cross-inhibition to heterologous foot-and-mouth disease virus infection induced by RNA interference targeting the conserved regions of viral genome. Liu, MQ,Chen, WZ,Ni, Z,Yan, WY,Fei, L,Jiao, Y,Zhang, J,Du, QY,Wei, X,Chen, JL,Liu, YM,Zheng, ZX.

[9]Adsorption recovery of Pd(II) from aqueous solutions by persimmon residual based bio-sorbent. Xie, Feng,Xie, Feng,Fan, Ruiyi,Yi, Qingping,Fan, Zaijun,Zhang, Qinglin,Luo, Zhengrong,Zhang, Qinglin,Luo, Zhengrong.

[10]The effect of different divalent cations on the reduction of hexavalent chromium by zerovalent iron. Hou, Meifang,Wan, Hongfu,Liu, Tinglin,Fan, Yanning,Liu, Xinming,Wang, Xugang.

[11]Reduction of iron oxides by Klebsiella pneumoniae L17: Kinetics and surface properties. Liu, Tong-xu,Li, Xiao-min,Li, Fang-bai,Zhang, Wei,Chen, Man-jia,Zhou, Shun-gui.

[12]A Convenient Synthesis of D,L-Selenomethionine. Ran, X. G.,Cao, D. R.,Wang, L. Y.,Ran, X. G.,Lin, Y. C..

[13]Illumina-based transcriptomic profiling of Panax notoginseng in response to arsenic stress. Liu, Yanfang,Mi, Yanhua,Zhang, Jianhua,Li, Qiwan,Chen, Lu. 2016

[14]Study on the Genetic Relationship of Panax Notoginseng and Its Wild Relatives Based on Fourier Translation Infrared Spectroscopy. Li Yun,Zhang Jin-yu,Xu Fu-rong,Li Yun,Wang Yuan-zhong,Yang Wei-ze,Yang Shao-bing,Zhang Jin-yu. 2016

[15]Discrimination of Panax Notoginseng from Different Regions by UV Spectra Characteristics Combined with Chemometric Method. Wang Yuan-zhong,Zhong Gui,Zhang Ji,Zhao Yan-li,Yang Tian-mei,Zhang Jin-yu,Zhong Gui. 2016

[16]Rapid Prediction Study of Total Flavonids Content in Panax notoginseng Using Infrared Spectroscopy Combined with Chemometrics. Li Yun,Zhang Ji,Wang Yuan-zhong,Zhang Jin-yu,Li Yun,Zhang Ji,Wang Yuan-zhong,Zhang Jin-yu,Li Yun,Xu Fu-rong,Zhang Jin-yu. 2017

[17]Study on the Origin Identification and Saponins Content Prediction of Panax notoginseng by FTIR Combined with Chemometrics. Li Yun,Xu Fu-rong,Zhang Jin-yu,Li Yun,Zhang Jin-yu,Wang Yuan-zhong,Li Yun,Zhang Jin-yu,Wang Yuan-zhong. 2017

[18]APPLICATION OF SYNCHROTRON RADIATION X-RAY FLUORESCENCE TO INVESTIGATE THE DISTRIBUTION OF ARSENIC IN DIFFERENT ORGANS OF PANAX NOTOGINSENG. Chen, L.,Mi, Y.,Yin, B.,He, L.,Li, Q.,Wan, X.,Yuan, Z.. 2017

[19]Application of the Vanillin Sulfuric Acid Colorimetry-Ultraviolet Spectrometry on Quality Evaluation of Panax notoginseng. Ding Yong-li,Wang Yuan-zhong,Zhang Ji,Zhang Jin-yu,Jin Hang,Ding Yong-li,Zhang Qing-zhi,Zhang Jin-yu,Jin Hang. 2013

[20]Common and Variation Peak Ratio Dual-Index Sequence Analysis of Vanillin-Sulfuric Acid Developing UV Fingerprint of Panax notoginseng. Zhong, Gui,Xiao, Yan-Bo,Zhong, Gui,Wang, Yuan-Zhong,Zhang, Ji,Zhao, Yan-Li,Zhang, Jin-Yu.

作者其他论文 更多>>