Simultaneous Overexpression of the HhERF2 and PeDREB2a Genes Enhanced Tolerances to Salt and Drought in Transgenic Cotton

文献类型: 外文期刊

第一作者: Li, JinBo

作者: Li, JinBo;Dong, XueNi;Shao, JiRong;Li, JinBo;Dong, XueNi;Lei, Zhi;Li, YongLiang;Yang, PeiYang;Tao, Fei;Wu, YanMin;Zhao, Liang;Li, Shi-Gang;Du, LinFeng

作者机构:

关键词: Drought stress;ERF/DREB transcription factors;transgenic cotton;salt stress

期刊名称:PROTEIN AND PEPTIDE LETTERS ( 影响因子:1.89; 五年影响因子:1.528 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: A desert-grown Halimodendron halodendron ethylene-responsive element binding factor gene (HhERF2), which encodes a 245 amino acids protein containing a conserved AP2/EREBP domain, was isolated through the rapid amplification cDNA end (RACE) method. Sequence and phylogenetic analysis indicated that HhERF2 was classified into the B-2 group of ERF subfamily. Semi-quantitative RT-PCR showed that HhERF2 was greatly induced by treatments with high-salt, drought and low temperature in H. halodendron seedlings. The expression vector containing HhERF2 and Populus euphratica dehydration-responsive element binding protein (PeDREB2a) genes driven by rd29A promoter was constructed and transferred into cotton (Gossypium hirsutum L.) by non-tissue culture Agrobacterium-mediated genetic transformation system. The transformation and expression of HhERF2 and PeDREB2a were identified by PCR and RT-PCR. Analyses of physiological function indicated that transgenic cottons had improved seeds germination, tolerance to drought and high-salt stresses. Agronomic evaluation in the field exhibited that transgenic lines presented a dwarf phenotype and improved further in the yield and characters. These results demonstrated that overexpressed both HhERF2 and PeDREB2a transcription factor genes in cotton induced elevated tolerance to drought and high-salt stresses.

分类号: Q51

  • 相关文献

[1]Arabidopsis EDT1/HDG11 improves drought and salt tolerance in cotton and poplar and increases cotton yield in the field. Yu, Lin-Hui,Chen, Xi,Zhao, Ping,Xu, Ping,Xiang, Cheng-Bin,Wu, Shen-Jie,Jiao, Gai-Li,Peng, Yi-Shu,Pei, Yan,Liu, Rui-Na,Zhu, Jian-Bo.

[2]Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. ZhongQun, He,ChaoXing, He,ZhiBin, Zhang,ZhiRong, Zou,HuaiSong, Wang.

[3]Overexpression of the Rice SUMO E3 Ligase Gene OsSIZ1 in Cotton Enhances Drought and Heat Tolerance, and Substantially Improves Fiber Yields in the Field under Reduced Irrigation and Rainfed Conditions. Mishra, Neelam,Sun, Li,Zhu, Xunlu,Smith, Jennifer,Esmaeili, Nardana,Zhang, Hong,Srivastava, Anurag Prakash,Yang, Xiaojie,Pehlivan, Necla,Luo, Hong,Shen, Guoxin,Jones, Don,Auld, Dick,Burke, John,Payton, Paxton.

[4]An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato. Pan, Yu,Hu, Zongli,Chen, Guoping,Pan, Yu,Seymour, Graham B.,Lu, Chungui,Chen, Xuqing. 2012

[5]Arabidopsis C3HC4-RING finger E3 ubiquitin ligase AtAIRP4 positively regulates stress-responsive abscisic acid signaling. Liu, Qiaohong,Liu, Zhibin,Yang, Hao,Wang, Jianmei,Li, Xufeng,Yang, Yi,Yang, Liang. 2016

[6]Isolation and characterization of induced genes under drought stress at the flowering stage in maize (Zea mays). Li, Hui-Yong,Wang, Tian-Yu,Shi, Yun-Su,Fu, Jun-Jie,Song, Yan-Chun,Wang, Guo-Ying,Li, Yu.

[7]Comparative proteomic analysis of alfalfa revealed new salt and drought stress-related factors involved in seed germination. Ma, Qiaoli,Kang, Junmei,Zhang, Kun,Wang, Tenghua,Sun, Yan,Kang, Junmei,Long, Ruicai,Zhang, Tiejun,Yang, Qingchuan,Ma, Qiaoli,Xiong, Junbo.

[8]Inducible and constitutive expression of an elicitor gene Hrip1 from Alternaria tenuissima enhances stress tolerance in Arabidopsis. Qiu, De-Wen,Zeng, Hong-Mei,Guo, Li-Hua,Yang, Xiu-Fen,Liu, Zheng.

[9]A banana aquaporin gene, MaPIP1;1, is involved in tolerance to drought and salt stresses. Xu, Yi,Jin, Zhiqiang,Hu, Wei,Liu, Juhua,Zhang, Jianbin,Jia, Caihong,Miao, Hongxia,Xu, Biyu,Jin, Zhiqiang. 2014

[10]Co-expression of AtNHX1 and TsVP improves the salt tolerance of transgenic cotton and increases seed cotton yield in a saline field. Cheng Cheng,Zhang, Kewei,Ying Zhang,Xiugui Chen,Jiuling Song,Zhiqiang Guo,Kunpeng Li,Kewei Zhang. 2018

[11]Measuring gene flow in the cultivation of transgenic cotton (Gossypium hirsutum L.). Bao-Hong Zhang,Xiao-Ping Pan,Teng-Long Guo,Qing-Lian Wang,Todd A. Anderson. 2005

[12]Pollen from Cry1Ac/CpTI-transgenic cotton does not affect the pollinating beetle Haptoncus luteolus. Lizhen Chen,Jinjie Cui,Weihua Ma,Changying Niu,Chaoliang Lei. 2011

[13]Effects of kanamycin on tissue culture and somatic embryogenesis in cotton. Bao-Hong Zhang,Fang Liu,Zhi-Hong Liu,Hong-Mei Wang,Chang-Bing Yao.

[14]Efficacy of transgenic cotton containing a cry1Ac gene from Bacillus thuringiensis against Helicoverpa armigera (Lepidoptera : Noctuidae) in Northern China. Guo, YY,Lv, N,Greenplate, JT,Deaton, R. 2003

[15]Impacts of transgenic Bt cotton on a non-target pest, Apolygus lucorum (Meyer-Dur) (Hemiptera: Miridae), in northern China. Li, Guoping,Feng, Hongqiang,Liu, Bing,Chen, Peiyu,Qiu, Feng,McNeil, Jeremy N.. 2011

[16]Development of insect-resistant transgenic cotton with chimeric TVip3A*accumulating in chloroplasts. Wu, Jiahe,Zhang, Xiangrong,Tian, Yingchuan,Luo, Xiaoli,Shi, Yuejing. 2011

[17]In vitro assay for 2,4-D resistance in transgenic cotton. BAO-HONG ZHANG,HONG-MEI WANG,FANG LIU,YUN-HAI LI,ZHENG-DE LIU.

[18]Transgenic cotton co-expressing chimeric Vip3AcAa and Cry1Ac confers effective protection against Cry1Ac-resistant cotton bollworm. Chen, Wen-bo,Liu, Chen-xi,Xiao, Yu-tao,Wu, Kong-ming,Lu, Guo-qing,Cheng, Hong-mei,Xu, Chao,Shen, Zhi-cheng,Soberon, Mario,Bravo, Alejandra.

[19]Cross-resistance studies of Cry1Ac-resistant strains of Helicoverpa armigera (Lepidoptera : Noctuidae) to Cry2Ab. Luo, Shudong,Wu, Kongming,Tian, Yan,Liang, Gemei,Feng, Xue,Zhang, Jie,Guo, Yuyuan.

[20]ABP9, a maize bZIP transcription factor, enhances tolerance to salt and drought in transgenic cotton. Wang, Chunling,Lu, Guoqing,Hao, Yuqiong,Guo, Huiming,Zhao, Jun,Cheng, Hongmei,Wang, Chunling,Guo, Yan.

作者其他论文 更多>>