Genetic differentiation and diversity of Callosobruchus chinensis collections from China

文献类型: 外文期刊

第一作者: Duan, C. X.

作者: Duan, C. X.;Zhu, Z. D.;Li, D. D.;Sun, S. L.;Wang, X. M.;Li, W. C.

作者机构:

关键词: Callosobruchus chinensis;simple sequence repeat;geographic populations;genetic differentiation;genetic diversity

期刊名称:BULLETIN OF ENTOMOLOGICAL RESEARCH ( 影响因子:1.75; 五年影响因子:2.007 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Callosobruchus chinensis (Linnaeus) is one of the most destructive pests of leguminous seeds. Genetic differentiation and diversity analysis of 345 C. chinensis individuals from 23 geographic populations using 20 polymorphic simple sequence repeats revealed a total of 149 alleles with an average of 7.45 alleles per locus. The average Shannon's information index was 1.015. The gene flow and genetic differentiation rate values at the 20 loci ranged from 0.201 to 1.841 and 11.0-47.2%, with averages of 0.849 and 24.4%, respectively. In the 23 geographic populations, the effective number of alleles and observed heterozygosity ranged from 1.441 to 2.218 and 0.191-0.410, respectively. Shannon's information index ranged from 0.357 to 0.949, with the highest value in Hohhot and the lowest in Rudong. In all comparisons, the fixation index (F-ST) values ranged from 0.049 to 0.441 with a total F-ST value of 0.254 among the 23 C. chinensis populations, indicating a moderate level of genetic differentiation and gene flow among these populations. Analysis of molecular variance revealed that the genetic variation within populations accounted for 76.7% of the total genetic variation. The genetic similarity values between populations varied from 0.617 to 0.969, whereas genetic distances varied from 0.032 to 0.483. Using un-weighted pair-group method using arithmetical averages cluster analysis, the 23 geographic collections were classified into four distinct genetic groups but most of them were clustered into a single group. The pattern of the three concentrated groups from polymerase chain reactions analysis showed a somewhat different result with cluster.

分类号: Q96`S4

  • 相关文献

[1]Analysis of genetic diversity among different geographic populations of Athetis lepigone using ISSR molecular markers. Ahmed, Tofael,Liu, Yu-juan,He, Kang-lai,Wang, Zhen-ying,Wang, Zhen-ying.

[2]Development and use of EST-SSR markers for assessing genetic diversity in the brown planthopper (Nilaparvata lugens Stal). Jing, S.,Liu, B.,Peng, L.,Peng, X.,Zhu, L.,He, G.,Fu, Q.. 2012

[3]Molecular diversity and genetic structure of 380 sweetpotato accessions as revealed by SSR markers. Yang Xin-sun,Liu Qing-chang,Yang Xin-sun,Su Wen-jin,Wang Lian-jun,Lei Jian,Chai Sha-sha. 2015

[4]Genetic diversity and population structure of vegetable soybean (Glycine max (L.) Merr.) in China as revealed by SSR markers. Dong, Dekun,Fu, Xujun,Yuan, Fengjie,Zhu, Shenlong,Li, Baiquan,Yang, Qinghua,Yu, Xiaomin,Zhu, Danhua,Chen, Pengyin. 2014

[5]Screening of highly informative and representative microsatellite markers for genotyping of major cultivated cotton varieties. M. Kuang,,W.H. Yang,F. Wang,H.X. Xu,Y.Q. Wang,D.Y. Zhou,D. Fang,L. Ma,X.A. Feng. 2014

[6]Genetic diversity and relationship analysis of Gossypium arboreum accessions. F. Liu,Z.L. Zhou,C.Y. Wang,Y.H Wang,X.Y. Cai,X.X. Wang,Z.S. Zhang,K.B. Wang. 2015

[7]Evaluation of Population Structure, Genetic Diversity and Origin of Northeast Asia Weedy Rice Based on Simple Sequence Repeat Markers. Li Mao-bai,Wang Hui,Cao Li-ming,Li Mao-bai. 2015

[8]Genetic diversity and elite gene introgression reveal the japonica rice breeding in northern China. Liu Dan,Wang Jia-yu,Wang Xiao-xue,Yang Xian-li,Sun Jian,Chen Wen-fu,Liu Dan. 2015

[9]Analysis of genetic diversity and population structure of peanut cultivars and breeding lines from China, India and the US using simple sequence repeat markers. Wang, Hui,Xie, Lianhui,Wang, Hui,Khera, Pawan,Culbreath, Albert K.,Wang, Hui,Guo, Baozhu,Wang, Hui,Yuan, Mei,Khera, Pawan,Varshney, Rajeev K.,Huang, Bingyan,Zhang, Xinyou,Katam, Ramesh,Zhuang, Weijian,Harris-Shultz, Karen,Moore, Kim M.. 2016

[10]Development, characterization, and variability analysis of microsatellites from a commercial cultivar of Musa acuminata. Wu, Y. T.,Wang, J. Y.,Zheng, L. S.,Liu, W. L.,Huang, B. Z..

[11]Genetic Diversity of European and Chinese Oilseed Brassica rapa Cultivars from Different Breeding Periods. Zhao Yong-guo,Lu Chang-ming,Zhao Yong-guo,Zhao Yong-guo,Atta, Ofori. 2009

[12]Diversity analysis of the developed qingke (hulless barley) cultivars representing different growing regions of the Qinghai-Tibet Plateau in China using sequence-related amplified polymorphism (SRAP) markers. Liu, Xianjun,Liu, Xinchun,Feng, Zongyun,Yang, Ping,Yang, Wuyun,Yang, Ping,Liu, Xianjun,Liu, Xinchun,Feng, Zongyun. 2010

[13]Genetic diversity and relationship of Mauremys mutica and M-annamensis assessed by DNA barcoding sequences. Zhao, Jian,Li, Wei,Wen, Ping,Zhang, Dandan,Zhu, Xinping,Zhao, Jian,Wen, Ping. 2016

[14]The loss of genetic diversity during captive breeding of the endangered sculpin, Trachidermus fasciatus, based on ISSR markers: implications for its conservation. Bi Xiaoxiao,Yang Qiaoli,Gao Tianxiang,Li Chuangju. 2011

[15]Genetic characterization of three breeds of high royal jelly producing honeybee (Apis mellifera ligustica) in China. Yin, Ling,Ji, Ting,Chen, Guohong,Peng, Wenjun. 2011

[16]Genetic variation in wild and cultured populations of the pearl oyster Pinctada fucata from southern China. Yu, Da Hui,Chu, Ka Hou. 2006

[17]Tracing genetic differentiation of Chinese Mongolian sheep using microsatellites. Zhong, T.,Han, J. L.,Zhao, Q. J.,Fu, B. L.,Pu, Y. B.,He, X. H.,Guan, W. J.,Ma, Y. -H.,Zhong, T.,Jeon, J. T.,Han, J. L.,Guo, J..

[18]Genetic diversity and differentiation of Acanthoscelides obtectus Say (Coleoptera: Bruchidae) populations in China. Duan, Canxing,Zhu, Zhendong,Wang, Xiaoming,Li, Wanchang,Bao, Shiying.

[19]Genetic diversity and population structure of Portunus sanguinolentus (Herbst, 1783) revealed by mtDNA COI sequences. Ren, Guijing,Ma, Hongyu,Ma, Chunyan,Wang, Wei,Chen, Wei,Ma, Lingbo,Ma, Hongyu.

[20]Genetic diversity and linkage disequilibrium studies on a 3.1-Mb genomic region of chromosome 3B in European and Asian bread wheat (Triticum aestivum L.) populations. Hao, C. Y.,Perretant, M. R.,Choulet, F.,Wang, L. F.,Paux, E.,Sourdille, P.,Feuillet, C.,Balfourier, Francois,Hao, C. Y.,Wang, L. F.,Zhang, X. Y.,Hao, C. Y.,Wang, L. F.,Zhang, X. Y.,Hao, C. Y.,Wang, L. F.,Zhang, X. Y..

作者其他论文 更多>>