Synthesis and biological activity of novel benzimidazole derivatives as potential antifungal agents
文献类型: 外文期刊
第一作者: Zhang, Tao
作者: Zhang, Tao;She, Dongmei;Ning, Jun;Mei, Xiangdong;Li, Yaofa;Pan, Wenliang;Gao, Zhanlin
作者机构:
关键词: benzimidazole derivatives;synthesis;characterization;biological activity;thiabendazole
期刊名称:JOURNAL OF PESTICIDE SCIENCE ( 影响因子:1.519; 五年影响因子:1.596 )
ISSN:
年卷期:
页码:
收录情况: SCI
摘要: In the present study, a series of novel benzimidazole derivatives containing chrysanthemum acid moieties was designed and synthesized. Preliminary investigation of biological activity indicated that all of the compounds exhibited lower activity than that of beta-cypermethrin against Plutella xylostella and Lipaphis erysimi; meanwhile, they showed good inhibitory activity against Botrytis cinerea and Sclerotinia sclerotiorum in vitro. The fungicidal activity of compound 8a against B. cinerea was approximately equal to that of thiabendazole and was twice as active against S. sclerotiorum as was thiabendazole. In addition, compound 9e displayed the most potent inhibitory activity against both fungi and was almost twice as potent as thiabendazole. (C) Pesticide Science Society of Japan
分类号: S48
- 相关文献
作者其他论文 更多>>
-
Versatile plant genome engineering using anti-CRISPR-Cas12a systems
作者:He, Yao;Xu, Tang;Zheng, Xuelian;Zhang, Yong;He, Yao;Liu, Shishi;Pu, Dongkai;Zhong, Zhaohui;Ren, Qiurong;Dong, Chuan;Wang, Yawei;Wang, Danning;Zhang, Yong;Liu, Shishi;Chen, Long;Zhang, Tao;Chen, Long;Zhang, Tao;Guo, Fengbiao;Guo, Fengbiao;Guo, Fengbiao;Qi, Yiping;Qi, Yiping
关键词:anti-CRISPR; Cas12a; AcrVA1; off-target effects; fine-tuning genome editing; inducible and tissue specific genome editing; CRISPRa; synthetic logic circuit
-
Genetic diversity and population structure in five Inner Mongolia cashmere goat populations using whole-genome genotyping
作者:Zhang, Tao;Wang, Zhiying;Li, Yaming;Zhou, Bohan;Liu, Yifan;Wang, Ruijun;Lv, Qi;Zhang, Yanjun;Su, Rui;Zhang, Tao;Wang, Zhiying;Li, Yaming;Zhou, Bohan;Liu, Yifan;Li, Jinquan;Wang, Ruijun;Lv, Qi;Zhang, Yanjun;Su, Rui;Wang, Zhiying;Li, Yaming;Zhou, Bohan;Liu, Yifan;Li, Jinquan;Wang, Ruijun;Lv, Qi;Zhang, Yanjun;Su, Rui;Li, Chun
关键词:Cashmere Goat; Genetic Diversity; Inner Mongolia Autonomous Region; Population Structure
-
Gonadal Transcriptome Sequencing Analysis Reveals the Candidate Sex-Related Genes and Signaling Pathways in the East Asian Common Octopus, Octopus sinensis
作者:Li, Fenghui;Chen, Siqing;Pan, Luying;Liu, Changlin;Bian, Li;Li, Fenghui;Chen, Siqing;Pan, Luying;Liu, Changlin;Bian, Li;Zhang, Tao
关键词:Octopus sinensis; gonadal transcriptome sequence; gene-expression profile; sex-related genes and pathways
-
Functional analysis of the CaPIPLC5 gene in the regulation of the fertility restoration in pepper
作者:Ma, Yan;Zhang, Tao;Wang, Yuhang;Wang, Lina;Kong, Weifu;Zhang, Gaoyuan;Wei, Bingqiang;Wei, Ming;Duan, Panpan
关键词:Cytoplasmic male sterility; Fertility restoration; Pepper; Phospholipase C; Transcription factor
-
Transcriptomics and metabolomics of the molecular mechanisms of ginseng's response to the continuous cropping obstacle
作者:Shen, Yanlong;Zhan, Yu;Zhang, Tao;Li, Qiong;Wang, Enpeng;Chen, Changbao;Shen, Yanlong;Zhang, Hao
关键词:Panax ginseng; Metabolome; Transcriptome; Environmental stress; Continuous cropping obstacle
-
N123I mutation in the ALV-J receptor-binding domain region enhances viral replication ability by increasing the binding affinity with chNHE1
作者:Yu, Mengmeng;Zhang, Yao;Zhang, Li;Wang, Suyan;Liu, Yongzhen;Xu, Zhuangzhuang;Liu, Peng;Chen, Yuntong;Guo, Ru;Meng, Lingzhai;Zhang, Tao;Fan, Wenrui;Qi, Xiaole;Gao, Li;Zhang, Yanping;Cui, Hongyu;Gao, Yulong;Gao, Yulong;Gao, Yulong
关键词:
-
OASL suppresses infectious bursal disease virus replication by targeting VP2 for degrading through the autophagy pathway
作者:Wang, Suyan;Xu, Zhuangzhuang;Liu, Yongzhen;Yu, Mengmeng;Zhang, Tao;Liu, Peng;Qi, Xiaole;Chen, Yuntong;Meng, Lingzhai;Guo, Ru;Zhang, Li;Fan, Wenrui;Gao, Li;Duan, Yulu;Zhang, Yanping;Cui, Hongyu;Gao, Yulong;Gao, Yulong;Gao, Yulong;Gao, Yulong
关键词:IBDV; OASL; VP2; degradation; autophagy