Application of terahertz spectroscopy imaging for discrimination of transgenic rice seeds with chemometrics

文献类型: 外文期刊

第一作者: Liu, Wei

作者: Liu, Wei;Liu, Changhong;Hu, Xiaohua;Yang, Jianbo;Zheng, Lei;Liu, Wei;Yang, Jianbo;Zheng, Lei

作者机构:

关键词: Terahertz spectroscopy imaging;Rice seed;Transgenic;Non-destructive determination;Chemometrics

期刊名称:FOOD CHEMISTRY ( 影响因子:7.514; 五年影响因子:7.516 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Discrimination of genetically modified organisms is increasingly demanded by legislation and consumers worldwide. The feasibility of a non-destructive discrimination of transgenic rice seeds from its non-transgenic counterparts was examined by terahertz spectroscopy imaging system combined with chemometrics. Principal component analysis (PCA), least squares support vector machines (LS-SVM), PCA-back propagation neural network (PCA-BPNN), and random forest (RF) models with the first and second derivative and standard normal variate transformation (SNV) pre-treatments were applied to classify rice seeds based on genotype. The results demonstrated that differences between non-transgenic and transgenic rice seeds did exist, and an excellent classification (accuracy was 96.67% in the prediction set) could be achieved using the RF model combined with the first derivative pre-treatment. The results indicated that THz spectroscopy imaging together with chemometrics would be a promising technique to identify transgenic rice seeds with high efficiency and without any sample preparation. (C) 2016 Elsevier Ltd. All rights reserved.

分类号: TS2`TS201.2

  • 相关文献

[1]Nondestructive determination of transgenic Bacillus thuringiensis rice seeds (Oryza sativa L.) using multispectral imaging and chemometric methods. Liu, Changhong,Chen, Wei,Zheng, Lei,Liu, Wei,Lu, Xuzhong,Yang, Jianbo,Zheng, Lei.

[2]Non-destructive determination of total polyphenols content and classification of storage periods of Iron Buddha tea using multispectral imaging system. Xiong, Chuanwu,Liu, Changhong,Pan, Wenjuan,Ma, Fei,Xiong, Can,Zheng, Lei,Qi, Li,Chen, Feng,Lu, Xuzhong,Yang, Jianbo,Zheng, Lei.

[3]Activity levels and expression of antioxidant enzymes in the ascorbate-glutathione cycle in artificially aged rice seed. Yin, Guangkun,Xin, Xia,Song, Chao,Chen, Xiaoling,Zhang, Jinmei,Wu, Shuhua,Li, Ruifang,Liu, Xu,Lu, Xinxiong. 2014

[4]Feasibility in multispectral imaging for predicting the content of bioactive compounds in intact tomato fruit. Liu, Changhong,Chen, Wei,Zheng, Lei,Liu, Wei,Yang, Jianbo,Zheng, Lei.

[5]Optimization of Informative Spectral Regions in FT-NIR Spectroscopy for Measuring the Soluble Solids Content of Apple. Wang, Jiahua,Liu, Haiying,Cheng, Jingjing,Cheng, Jingjing,Tang, Zhihui,Han, Donghai. 2015

[6]Variation and correlation analysis of polyphenolic compounds in Malus germplasm. Wang, Dajiang,Wang, Kun,Li, Jing,Gao, Yuan,Zhao, Jirong,Liu, Lijun,Gong, Xin,Dong, Xingguang. 2018

[7]Discrimination of Panax Notoginseng from Different Regions by UV Spectra Characteristics Combined with Chemometric Method. Wang Yuan-zhong,Zhong Gui,Zhang Ji,Zhao Yan-li,Yang Tian-mei,Zhang Jin-yu,Zhong Gui. 2016

[8]Visualization of Protein in Peanut Using Hyperspectral Image with Chemometrics. Liu Hong-zhi. 2017

[9]Fourier transform mid-infrared spectroscopy and chemometrics to identify and discriminate Boletus edulis and Boletus tomentipes mushrooms. Qi, Lu-Ming,Zhang, Ji,Wang, Yuan-Zhong,Qi, Lu-Ming,Liu, Hong-Gao,Li, Tao. 2017

[10]Floral classification of honey using liquid chromatography-diode array detection-tandem mass spectrometry and chemometric analysis. Zhou, Jinhui,Li, Yi,Chen, Lanzhen,Wu, Liming,Zhao, Jing,Zhou, Jinhui,Li, Yi,Chen, Lanzhen,Wu, Liming,Zhao, Jing,Zhou, Jinhui,Li, Yi,Chen, Lanzhen,Wu, Liming,Zhao, Jing,Yao, Lihu,Yao, Lihu.

[11]Liquid Chromatography Tandem Mass Spectrometry Combined with Fourier Transform Mid-Infrared Spectroscopy and Chemometrics for Comparative Analysis of Raw and Processed Gentiana rigescens. Pan, Yu,Zhang, Ji,Zhao, Yan-Li,Zuo, Zhi-Tian,Wang, Yuan-Zhong,Li, Wan-Yi,Pan, Yu,Li, Wan-Yi,Shen, Tao.

[12]Identification of Camellia Oils by Near Infrared Spectroscopy Combined with Chemometrics. Zhu Xiang-Rong,Li Gao-Yang,Shan Yang,Shang Xue-Bo,Huang Lu-Hong,Shuai Ming. 2011

[13]Evaluation and quantitative analysis of different growth periods of herb-arbor intercropping systems using HPLC and UV-vis methods coupled with chemometrics. Chu, Bo-wen,Zhang, Ji,Li, Zhi-min,Zhao, Yan-li,Zuo, Zhi-tian,Wang, Yuan-zhong,Li, Wan-yi,Chu, Bo-wen,Zhang, Ji,Li, Zhi-min,Zhao, Yan-li,Zuo, Zhi-tian,Wang, Yuan-zhong,Li, Wan-yi,Li, Wan-yi.

[14]Discrimination of Adulterated Sesame Oil Using Mid-infrared Spectroscopy and Chemometrics. Zhao, Xiande,Dong, Daming,Zheng, Wengang,Jiao, Leizi,Lang, Yun.

[15]Characterization of Chinese Unifloral Honeys Based on Proline and Phenolic Content as Markers of Botanical Origin, Using Multivariate Analysis. Wen, Ya-Qin,Zhang, Jinzhen,Li, Yi,Chen, Lanzhen,Zhao, Wen,Zhou, Jinhui,Jin, Yue,Wen, Ya-Qin,Zhang, Jinzhen,Li, Yi,Chen, Lanzhen,Zhao, Wen,Zhou, Jinhui,Jin, Yue,Wen, Ya-Qin,Zhang, Jinzhen,Li, Yi,Chen, Lanzhen,Zhao, Wen,Zhou, Jinhui,Jin, Yue,Zhang, Jinzhen,Li, Yi,Chen, Lanzhen,Zhao, Wen,Zhou, Jinhui,Jin, Yue.

[16]Differentiation of Chinese robusta coffees according to species, using a combined electronic nose and tongue, with the aid of chemometrics. Dong, Wenjiang,Zhao, Jianping,Hu, Rongsuo,Dong, Yunping,Tan, Lehe,Dong, Wenjiang,Zhao, Jianping,Hu, Rongsuo,Tan, Lehe,Dong, Wenjiang,Zhao, Jianping,Dong, Yunping,Tan, Lehe.

[17]Detection of adulterants such as sweeteners materials in honey using near-infrared spectroscopy and chemometrics. Shan, Yang,Li, Gaoyang,Su, Donglin,Liu, Feng,Li, Shuifang,Zhang, Zhuoyong.

[18]Research Process on Hyperspectral Imaging Detection Technology for the Quality and Safety of Grain and Oils. Yu Hong-wei,Wang Qiang,Liu Li,Shi Ai-min,Hu Hui,Liu Hong-zhi. 2016

[19]Targeted multivariate adulteration detection based on fatty acid profiles and Monte Carlo one-class partial least squares. Zhang, Liangxiao,Yuan, Zhe,Li, Peiwu,Wang, Xuefang,Mao, Jin,Zhang, Qi,Zhang, Liangxiao,Yuan, Zhe,Li, Peiwu,Zhang, Qi,Zhang, Liangxiao,Li, Peiwu,Mao, Jin,Li, Peiwu,Wang, Xuefang,Mao, Jin,Zhang, Qi,Zhang, Liangxiao,Hu, Chundi.

[20]Characterization of volatile components in four vegetable oils by headspace two-dimensional comprehensive chromatography time-of-flight mass spectrometry. Hu, Wei,Zhang, Liangxiao,Li, Peiwu,Wang, Xiupin,Zhang, Qi,Xu, Baocheng,Sun, Xiaoman,Ma, Fei,Ding, Xiaoxia,Hu, Wei,Zhang, Qi,Li, Peiwu,Zhang, Qi,Ma, Fei,Zhang, Liangxiao,Li, Peiwu,Ding, Xiaoxia,Zhang, Liangxiao,Li, Peiwu,Wang, Xiupin,Xu, Baocheng,Sun, Xiaoman,Ma, Fei.

作者其他论文 更多>>