Exogenous sucrose treatment accelerates postharvest tomato fruit ripening through the influence on its metabolism and enhancing ethylene biosynthesis and signaling

文献类型: 外文期刊

第一作者: Li, Dongdong

作者: Li, Dongdong;Mou, Wangshu;Li, Li;Mao, Linchun;Ying, Tiejin;Luo, Zisheng;Wang, Yansheng

作者机构:

关键词: Sucrose;Metabolism;Ethylene;Signaling;Tomato

期刊名称:ACTA PHYSIOLOGIAE PLANTARUM ( 影响因子:2.354; 五年影响因子:2.711 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: The role of sucrose as a signal molecule in plants was in debate for a long time, until recently, it gradually becomes more prominently accepted. Sucrose plays roles in a vast array of developmental processes in plants, however, its function in fruit ripening has not been well elucidated. In this study, the influence of exogenous sucrose treatment (500 mM) on postharvest tomato fruit ripening was investigated. It was found that, in comparison with mannitol treatment (500 mM, set as control), sucrose accelerated the ripening process with higher levels of respiration rate and ethylene production during the storage. Sucrose treatment up-regulated its biosynthetic genes, whilst stimulated expressions of genes encoding degradation related enzymes in the fruits. However, higher sucrose content was observed in sucrose-treated fruits only in the first few days. In addition, sucrose application had minor effect on the contents of its degrading products, glucose and fructose. Moreover, exogenous sucrose treatment up-regulated expressions of ethylene biosynthetic genes, and promoted ethylene signal transduction via influencing critical genes of the signaling pathway in different patterns. These results indicate that sucrose stimulates tomato fruit ripening may through mediating its own metabolism, which facilitates nutrients fluxes and metabolic signaling molecules activation, and also by enhancing ethylene biosynthesis and signal transduction.

分类号: Q94

  • 相关文献

[1]Comparative Transcriptome Analysis of Primary Roots of Brassica napus Seedlings with Extremely Different Primary Root Lengths Using RNA Sequencing. Dun, Xiaoling,Tao, Zhangsheng,Wang, Jie,Wang, Xinfa,Liu, Guihua,Wang, Hanzhong. 2016

[2]A histone deacetylase gene, SlHDA3, acts as a negative regulator of fruit ripening and carotenoid accumulation. Guo, Jun-E,Hu, Zongli,Yu, Xiaohui,Li, Anzhou,Li, Fenfen,Wang, Yunshu,Chen, Guoping,Tian, Shibing. 2018

[3]Different effects on ACC oxidase gene silencing triggered by RNA interference in transgenic tomato. Xiong, AS,Yao, QH,Peng, RH,Li, X,Han, PL,Fan, HQ. 2005

[4]Diffusivity of 1-methylcyclopropene in spinach and bok choi leaf tissue, disks of tomato and avocado fruit tissue, and whole tomato fruit. Dong, Xiaoqing,Ramirez-Sanchez, Maricruz,Huber, Donald J.,Zhang, Zhengke,Choi, Sun Tay,Lee, James H.,Dong, Xiaoqing,Rao, Jingping,Zhang, Zhengke,Choi, Sun Tay. 2013

[5]A Comprehensive Proteomic Survey of ABA-Induced Protein Phosphorylation in Rice (Oryza sativa L.). Qiu, Jiehua,Hou, Yuxuan,Wang, Yifeng,Li, Zhiyong,Zhao, Juan,Tong, Xiaohong,Lin, Haiyan,Wei, Xiangjin,Zhang, Jian,Lin, Haiyan,Ao, Hejun. 2017

[6]Mechanisms and Physiological Roles of the CBL-CIPK Networking System in Arabidopsis thaliana. Mao, Jingjing,Manik, S. M. Nuruzzaman,Shi, Sujuan,Chao, Jiangtao,Wang, Qian,Liu, Haobao,Shi, Sujuan,Jin, Yirong. 2016

[7]A Quantitative Proteomic Analysis of Brassinosteroid-induced Protein Phosphorylation in Rice (Oryza sativa L.). Hou, Yuxuan,Qiu, Jiehua,Wang, Yifeng,Li, Zhiyong,Zhao, Juan,Tong, Xiaohong,Lin, Haiyan,Zhang, Jian,Lin, Haiyan. 2017

[8]Activation of Bombyx neuropeptide G protein-coupled receptor A4 via a G alpha i-dependent signaling pathway by direct interaction with neuropeptide F from silkworm, Bombyx mori. Deng, Xiaoyan,Yang, Huipeng,He, Xiaobai,Liao, Yuan,Zheng, Congxia,Zhu, Chenggang,Zhou, Naiming,Zhang, Guozheng,Zhou, Qi,Gao, Jimin.

[9]alpha-Farnesene and ocimene induce metabolite changes by volatile signaling in neighboring tea (Camellia sinensis) plants. Zeng, Lanting,Liao, Yinyin,Zhou, Ying,Yang, Ziyin,Zeng, Lanting,Liao, Yinyin,Zhou, Ying,Yang, Ziyin,Zeng, Lanting,Liao, Yinyin,Yang, Ziyin,Li, Jianlong,Tang, Jinchi,Li, Jianlong,Tang, Jinchi,Dong, Fang.

[10]Functional analysis of tomato LeEIL1 in an Arabidopsis ein2 mutant. Pan, Yu,Chen, Guoping,Hu, Zongli,Lu, Chungui,Chen, Xuqing.

[11]Nitric oxide production is associated with response to brown planthopper infestation in rice. Liu, Yuqiang,He, Jun,Jiang, Ling,Wu, Han,Xiao, Yuehua,Liu, Yanlin,Li, Guangquan,Du, Yueqiang,Liu, Chenyang,Wan, Jianmin,Wan, Jianmin.

[12]Comparative Transcriptomic Profiling of a Salt-Tolerant Wild Tomato Species and a Salt-Sensitive Tomato Cultivar. Sun, Wei,Zhu, Huishan,Liu, Aihua,Hua, Xuejun,Xu, Xinna,Liu, Lei,Li, Junming.

[13]CharacterizationofmousebrainmicroRNAsafterinfectionwithcyst-formingToxoplasmagondii. 徐民俊,DonghuiZhou,AlasdairJ.Nisbet,SiyangHuang,YifanFan,XingquanZhu. 2013

[14]Phytochromes Regulate SA and JA Signaling Pathways in Rice and Are Required for Developmentally Controlled Resistance to Magnaporthe grisea. Xie, Xian-Zhi,Xue, Yan-Jiu,Zhou, Jin-Jun,Zhang, Bin,Xie, Xian-Zhi,Zhou, Jin-Jun,Zhang, Bin,Xue, Yan-Jiu,Chang, Hong,Takano, Makoto.

[15]Arabidopsis ABA Receptor RCAR1/PYL9 Interacts with an R2R3-Type MYB Transcription Factor, AtMYB44. Li, Dekuan,Li, Ying,Zhang, Liang,Wang, Xiaoyu,Zhao, Zhe,Tao, Zhiwen,Wang, Jianmei,Li, Xufeng,Yang, Yi,Li, Dekuan,Yang, Yi,Wang, Jin,Lin, Min. 2014

[16]Proteome analysis of maize seeds: the effect of artificial ageing. Xin, Xia,Lin, Xin-Hai,Chen, Xiao-Ling,Liu, Xu,Lu, Xin-Xiong,Lin, Xin-Hai,Zhou, Yuan-Chang.

[17]A new Akirin1 gene in turbot (Scophthalmus maximus): Molecular cloning, characterization and expression analysis in response to bacterial and viral immunological challenge. Yang, Chang-Geng,Wang, Xian-Li,Wang, Lei,Zhang, Bo,Chen, Song-Lin,Yang, Chang-Geng.

[18]Overexpression of the PP2A-C5 gene confers increased salt tolerance in Arabidopsis thaliana. Hu, Rongbin,Zhu, Yinfeng,Zhang, Hong,Shen, Guoxin.

[19]Genome-wide survey and expression analysis of the calcium-dependent protein kinase gene family in cassava. Hu, Wei,Hou, Xiaowan,Xia, Zhiqiang,Yan, Yan,Wei, Yunxie,Zou, Meiling,Lu, Cheng,Wang, Wenquan,Peng, Ming,Wang, Lianzhe.

[20]Effects of Lysiphlebia japonica (Ashmead) on cotton-melon aphid Aphis gossypii Glover lipid synthesis. S. Zhang,J.-Y. Luo,L.-M. Lv,C.-Y. Wang,C.-H. Li,X.-Z. Zhu,J.-J. Cui.

作者其他论文 更多>>