Identification of candidate thermotolerance genes during early seedling stage in upland cotton (Gossypium hirsutum L.) revealed by comparative transcriptome analysis

文献类型: 外文期刊

第一作者: Peng, Zhen

作者: Peng, Zhen;Cao, Moju;Xu, Jie;Lu, Yanli;Peng, Zhen;He, Shoupu;Gong, Wenfang;Sun, Junling;Pan, Zhaoe;Du, Xiongming;Sun, Gaofei

作者机构:

关键词: Gossypium hirsutum;Thermotolerance;Transcriptome;Transcription factor;Heat-shock protein

期刊名称:ACTA PHYSIOLOGIAE PLANTARUM ( 影响因子:2.354; 五年影响因子:2.711 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: High-temperature (HT) stress is a major environmental stress that limits cotton growth, metabolism, and yield worldwide. The identification and characterization of thermotolerance is restricted by the plant growth environment and growth stage. In this study, four genotypes of upland cotton (Gossypium hirsutum L.) with known field thermotolerance were evaluated under normal and HTs at the seedlings stage in a growth cabinet with 11 physiological, biochemical, and phenotypic assays. Consistent with previous field observations, the thermotolerance could be identified by genotype differences at the seedling stage under HT in a growth cabinet. Comparative transcriptome analysis was performed on seedlings of two contrasting cotton genotypes after 4 and 8 h of HT exposure. Gene ontology analysis combined with BLAST annotations revealed a large number of HT-induced differentially expressed genes (4,698) that either exhibited higher expression levels in the heat-tolerant genotype (Nan Dan Ba Di Da Hua) compared with the heat-sensitive genotype (Earlistaple 7), or were differentially expressed only in Nan Dan Ba Di Da Hua. These genes encoded mainly protein kinases, transcription factors, and heat-shock proteins, which were considered to play key roles in thermotolerance in upland cotton. Two heat-shock transcription factor genes (homologs of AtHsfA3, AtHsfC1) and AP2/EREBP family genes (homologs of AtERF20, AtERF026, AtERF053, and AtERF113) were identified as possible key regulators of thermotolerance in cotton. Some of the differentially expressed genes were validated by quantitative real-time PCR analysis. Our findings provide candidate genes that could be used to improve thermotolerance in cotton cultivars.

分类号: Q94

  • 相关文献

[1]Genome-Wide Study of YABBY Genes in Upland Cotton and Their Expression Patterns under Different Stresses. Zhaoen Yang,Qian Gong,Li, Fuguang,Lingling Wang,Yuying Jin,Jianping Xi,Zhi Li,Wenqiang Qin,Zuoren Yang,Lili Lu,Quanjia Chen,Fuguang Li. 2018

[2]Transcriptome profiling of early developing cotton fiber by deep-sequencing reveals significantly differential expression of genes in a fuzzless/lintless mutant. Wang, Qin Qin,Liu, Fei,Zeng, Hou Qing,Yang, Zhi Min,Chen, Xu Sheng,Ma, Xiao Jie. 2010

[3]Characterization of the global transcriptome for cotton (Gossypium hirsutum L.) anther and development of SSR marker. Xianwen Zhang ,Zhenwei Ye,TiankangWang,Hairong Xiong,Xiaoling Yuan,Zhigang Zhang,Youlu Yuan,Zhi Liu.

[4]De Novo Transcriptome Sequencing and the Hypothetical Cold Response Mode of Saussurea involucrata in Extreme Cold Environments. Li, Jin,Liu, Hailiang,Xia, Wenwen,Mu, Jianqiang,Feng, Yujie,Liu, Ruina,Wang, Aiying,Lin, Zhongping,Zhu, Jianbo,Chen, Xianfeng,Liu, Hailiang,Yan, Panyao,Chen, Xianfeng,Lin, Zhongping,Guo, Yong. 2017

[5]Light-induced Variation in Phenolic Compounds in Cabernet Sauvignon Grapes (Vitis vinifera L.) Involves Extensive Transcriptome Reprogramming of Biosynthetic Enzymes, Transcription Factors, and Phytohormonal Regulators. Cheng, Guo,Li, Qiang,Wang, Yu,Lan, Yi-Bin,Li, Si-Yu,Zhu, Yan-Rong,Song, Wen-Feng,Zhang, Xue,Cui, Xiao-Di,Wang, Jun,Wang, Yu,Lan, Yi-Bin,Li, Si-Yu,Wang, Jun,He, Yan-Nan,Chen, Wu,Sun, Run-Ze,Sun, Run-Ze,Cheng, Guo,Li, Qiang. 2017

[6]Transcriptomic Analysis of Seed Coats in Yellow-Seeded Brassica napus Reveals Novel Genes That Influence Proanthocyanidin Biosynthesis. Hong, Meiyan,Hu, Kaining,Tian, Tiantian,Li, Xia,Chen, Li,Zhang, Yan,Yi, Bin,Wen, Jing,Ma, Chaozhi,Shen, Jinxiong,Fu, Tingdong,Tu, Jinxing,Li, Xia,Chen, Li,Zhang, Yan. 2017

[7]Analysis of global gene expression profiles to identify differentially expressed genes critical for embryo development in Brassica rapa. Zhang, Yu,Peng, Lifang,Wu, Ya,Shen, Yanyue,Wang, Jianbo,Wu, Xiaoming.

[8]Identification of the Hevea brasiliensis AP2/ERF superfamily by RNA sequencing. Duan, Cuifang,Argout, Xavier,Gebelin, Virginie,Summo, Marilyne,Dufayard, Jean-Francois,Leclercq, Julie,Piyatrakul, Piyanuch,Pirrello, Julien,Rio, Maryannick,Montoro, Pascal,Duan, Cuifang,Kuswanhadi,Piyatrakul, Piyanuch,Champion, Antony. 2013

[9]Identification of Candidate Anthocyanin-Related Genes by Transcriptomic Analysis of `Furongli' Plum (Prunus salicina Lindl.) during Fruit Ripening Using RNA-Seq. Fang, Zhi-Zhen,Zhou, Dan-Rong,Ye, Xin-Fu,Jiang, Cui-Cui,Pan, Shao-Lin. 2016

[10]Characterization of four heat-shock protein genes from Nile tilapia (Oreochromis niloticus) and demonstration of the inducible transcriptional activity of Hsp70 promoter. Zhang, Lili,Sun, Chengfei,Ye, Xing,Lu, Maixin,Liu, Zhigang,Tian, Yuanyuan,Zou, Shuming.

[11]The Potential Coordination of the Heat-Shock Proteins and Antioxidant Enzyme Genes of Aphidius gifuensis in Response to Thermal Stress. Yu, Wen-Bo,Zhang, Shi-Ze,Tian, Hong-Gang,Liu, Tong-Xian,Kang, Zhi-Wei,Yu, Wen-Bo,Zhang, Shi-Ze,Tian, Hong-Gang,Liu, Tong-Xian,Liu, Fang-Hua,Liu, Xiang,Tan, Xiao-Ling. 2017

[12]Role of ocular albinism type 1 (OA1) GPCR in Asian gypsy moth development and transcriptional expression of heat-shock protein genes. Sun, LiLi,Wang, ZhiYing,Liu, Peng,Zou, ChuanShan,Xue, XuTing,Cao, ChuanWang,Wu, HongQu.

[13]Transcriptomic responses to different doses of cycloxaprid involved in detoxification and stress response in the whitebacked planthopper, Sogatella furcifera. Yang, Yuanxue,Zhang, Yixi,Yang, Baojun,Liu, Zewen,Fang, Jichao.

[14]Protein-DNA interactions in the promoter region of the gene encoding diapause hormone and pheromone biosynthesis activating neuropeptide of the cotton bollworm, Helicoverpa armigera. Hong, B,Zhang, ZF,Tang, SM,Yi, YZ,Zhang, TY,Xu, WH.

[15]The Arabidopsis J-protein AtDjB1 facilitates thermotolerance by protecting cells against heat-induced oxidative damage. Zhou, Wei,Zhou, Ting,Li, Mi-Xin,Zhao, Chun-Lan,Jia, Ning,Wang, Xing-Xing,Sun, Yong-Zhen,Xu, Meng,Li, Bing,Zhou, Wei,Li, Guo-Liang,Zhou, Ren-Gang,Zhou, Wei. 2012

[16]Molecular cloning of heat shock protein 60 from Marsupenaeus japonicus and its expression profiles at early developmental stages and response to heat stress. Zheng, Jinbin,Li, Lijun,Mao, Yong,Su, Yongquan,Wang, Jun,Dong, Hongbiao,Mao, Yong. 2018

[17]Toxoplasma gondii Clp family protein: TgClpB1 plays a crucial role in thermotolerance. Cao, Shinuo,Du, Nali,Chen, Heming,Pang, Yu,Zhang, Zhaoxia,Zheng, Jun,Jia, Honglin. 2017

[18]cDNA Cloning of Heat Shock Protein Genes and Their Expression in an Indigenous Cryptic Species of the Whitefly Bemisia tabaci Complex from China. Wan Fang-hao,Guo Jian-ying,Yu Hao. 2012

[19]Phosphoinositide-specific phospholipase C9 is involved in the thermotolerance of Arabidopsis. Zheng, Shu-Zhi,Liu, Yu-Liang,Li, Bing,Shang, Zhong-lin,Sun, Da-Ye,Zhou, Ren-Gang. 2012

[20]Differential gene expression in whitefly (Bemisia tabaci) B-biotype females and males under heat-shock condition. Wan, Fang-Hao,Wan, Fang-Hao.

作者其他论文 更多>>