Molecular genetic analysis of grain protein content and flour whiteness degree using RILs in common wheat

文献类型: 外文期刊

第一作者: Sun, Xianyin

作者: Sun, Xianyin;Wu, Ke;Qian, Zhaoguo;Sun, Xianyin;Zhao, Yan;Kong, Fanmei;Guo, Ying;Li, Sishen;Wang, Yingying

作者机构:

关键词: wheat;quantitative trait locus;grain protein content;flour whiteness degree

期刊名称:JOURNAL OF GENETICS ( 影响因子:1.166; 五年影响因子:1.212 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Grain protein content (GPC) and flour whiteness degree (FWD) are important qualitative traits in common wheat. Quantitative trait locus (QTL) mapping for GPC and FWD was conducted using a set of 131 recombinant-inbred lines derived from the cross 'Chuan 35050 x Shannong 483' in six environmental conditions. A total of 22 putative QTLs (nine GPC and 13 FWD) were identified on 12 chromosomes with individual QTL explaining 4.5-34.0% phenotypic variation. Nine QTLs (40.9%) were detected in two or more environments. The colocated QTLs were on chromosomes 1B and 4B. Among the QTLs identified for GPC, QGpc.sdau-4A from the parent Shannong 483 represented some important favourable QTL alleles. QGpc.sdau-2A.1 and QFwd.sdau-2A.1 had a significant association with both GPC and FWD. The markers detected on top of QTL regions could be potential targets for marker-assisted selection.

分类号: Q3

  • 相关文献

[1]Mapping quantitative trait loci for quality factors in an inter-class cross of US and Chinese wheat. Bai, Guihua,Sun, Xiaochun,Marza, Felix,Carver, Brett F.,Ma, Hongxiang.

[2]Haynaldia villosa NAM-V1 is linked with the powdery mildew resistance gene Pm21 and contributes to increasing grain protein content in wheat. Zhao, Chuanzhi,Lv, Xindi,Li, Yinghui,Li, Feng,Geng, Miaomiao,Mi, Yangyang,Ni, Zhongfu,Xie, Chaojie,Sun, Qixin,Zhao, Chuanzhi,Lv, Xindi,Li, Yinghui,Li, Feng,Geng, Miaomiao,Mi, Yangyang,Ni, Zhongfu,Xie, Chaojie,Sun, Qixin,Zhao, Chuanzhi. 2016

[3]Wheat Grain Protein Content Estimation Based on Multi-temporal Remote Sensing Data and Generalized Regression Neural Network. Li, Cunjun,Wang, Qian,Wang, Jihua,Wang, Yan,Yang, Xiaodong,Song, Xiaoyu,Huang, Wenjiang. 2012

[4]Study on Predicting Protein Content of Wheat Seeds by Using Wheat Leaves SPAD Value. Gao Fei,Xiao Jing,Gu Yun-hong,Zhen, Jiao,Jin Qing-sheng. 2012

[5]Conditional QTL mapping of protein content in wheat with respect to grain yield and its components. Wang, Lin,Cui, Fa,Jun, Li,Ding, Anming,Zhao, Chunhua,Li, Xingfeng,Feng, Deshun,Gao, Jurong,Wang, Honggang,Wang, Lin,Wang, Jinping,Cui, Fa,Zhao, Chunhua,Jun, Li,Ding, Anming.

[6]Estimating wheat grain protein content from ground-based hyperspectral data using an improved detecting method. Lu, YL,Li, SK,Xie, RZ,Gao, SJ,Wang, KR,Wang, G,Xiao, CH. 2005

[7]Remobilization of vegetative nitrogen to developing grain in wheat (Triticum aestivum L.). Kong, Lingan,Xie, Yan,Hu, Ling,Feng, Bo,Li, Shengdong.

[8]Fine mapping a domestication-related QTL for spike-related traits in a synthetic wheat. Wang, Jin,Liao, Xiangzheng,Li, Yulian,Zhou, Ronghua,Gao, Lifeng,Jia, Jizeng,Wang, Jin,Yang, Xueju.

[9]Identification and Validation of a Major Quantitative Trait Locus for Slow-rusting Resistance to Stripe Rust in Wheat. Cao, Xiaohua,Zhou, Jianghong,Gong, Xiaoping,Qi, Xiaoquan,Cao, Xiaohua,Zhao, Guangyao,Jia, Jizeng. 2012

[10]GENETIC ANALYSIS OF THE GRAIN PROTEIN CONTENT IN SOFT RED WINTER WHEAT (Triticum aestivum L.). Yao, Jinbao,Ma, Hongxiang,Yang, Xueming,Zhou, Miaoping,Yang, Dan. 2014

[11]Estimation of Grain Protein Content in Winter Wheat by Using Three Methods with Hyperspectral Data. Xiu-liang Jin,Wang, Ji-hua,Xiu-liang Jin,Xin-gang Xu,Hai-kuan Feng,Xiao-yu Song,Qian Wang,Xiu-liang Jin,Xin-gang Xu,Hai-kuan Feng,Xiao-yu Song,Qian Wang,Xiu-liang Jin,Wang, Ji-hua,Guo, Wen-shan. 2014

[12]Estimating Wheat Grain Protein Content Using Multi-Temporal Remote Sensing Data Based on Partial Least Squares Regression. Li Cun-jun,Wang Ji-hua,Wang Qian,Wang Da-cheng,Song Xiao-yu,Wang Yan,Huang Wen-jiang,Li Cun-jun,Wang Ji-hua,Huang Wen-jiang. 2012

[13]The allelic distribution and variation analysis of the NAM-B1 gene in Chinese wheat cultivars. Chen Xue-yan,Ji Wan-quan,Chen Xue-yan,Song Guo-qi,Zhang Shu-juan,Li Yu-lian,Gao Jie,Li Gen-ying,Shahidul, Islam,Ma Wu-jun,Shahidul, Islam,Ma Wu-jun. 2017

[14]Assimilation of Two Variables Derived from Hyperspectral Data into the DSSAT-CERES Model for Grain Yield and Quality Estimation. Li, Zhenhai,Xu, Xingang,Zhao, Chunjiang,Yang, Guijun,Feng, Haikuan,Li, Zhenhai,Xu, Xingang,Zhao, Chunjiang,Yang, Guijun,Feng, Haikuan,Li, Zhenhai,Wang, Jihua,Wang, Jihua,Xu, Xingang,Zhao, Chunjiang,Yang, Guijun,Feng, Haikuan,Xu, Xingang,Zhao, Chunjiang,Yang, Guijun,Feng, Haikuan,Jin, Xiuliang. 2015

[15]EFFECTS OF REGULATED DEFICIT IRRIGATION ON GRAIN YIELD AND QUALITY TRAITS IN WINTER WHEAT. Meng, Zhaojiang,Duan, Aiwang,Gao, Yao,Wang, Xiaosen,Shen, Xiaojun,Dassanayake, Kithsiri Bandara,Chen, Deli.

[16]Genetic Variation of High Molecular Weight Glutenin Subunits in Wheat Accessions in China. Guo, Xiaomin,Li, Hongqin,Xiang, Jishan,Xu, Xin,Liu, Weihua,Gao, Ainong,Yang, Xinming,Li, Xiuquan,Li, Lihui,Wang, Ruihui.

[17]Estimating wheat yield and quality by coupling the DSSAT-CERES model and proximal remote sensing. Li, Zhenhai,Jin, Xiuliang,Zhao, Chunjiang,Xu, Xingang,Yang, Guijun,Li, Cunjun,Shen, Jiaxiao,Li, Zhenhai,Jin, Xiuliang,Zhao, Chunjiang,Xu, Xingang,Yang, Guijun,Li, Cunjun,Shen, Jiaxiao,Zhao, Chunjiang,Zhao, Chunjiang,Li, Zhenhai,Wang, Jihua,Wang, Jihua,Shen, Jiaxiao.

[18]Use of genotype-environment interactions to elucidate the pattern of maize root plasticity to nitrogen deficiency. Li, Pengcheng,Zhuang, Zhongjuan,Cai, Hongguang,Cheng, Shuai,Soomro, Ayaz Ali,Liu, Zhigang,Gu, Riliang,Mi, Guohua,Yuan, Lixing,Chen, Fanjun,Li, Pengcheng,Zhuang, Zhongjuan,Cai, Hongguang. 2016

[19]Genetic analysis of maize kernel thickness by quantitative trait locus identification. Wen, G. Q.,Liu, X. H.,Liao, C. M.. 2015

[20]Quantitative trait locus analysis for ear height in maize based on a recombinant inbred line population. Zhang, H. M.,Wu, X. P.,Liu, X. H.,Sun, Y.,Li, Z. Q.,Zhang, H. M.,Wu, X. P.,Sun, Y.,Li, Z. Q.. 2014

作者其他论文 更多>>