Constitutive expression of the ZmZIP7 in Arabidopsis alters metal homeostasis and increases Fe and Zn content

文献类型: 外文期刊

第一作者: Li, Suzhen

作者: Li, Suzhen;Zhao, Yongfeng;Li, Hongbo;Liu, Yuanfeng;Zhu, Liying;Guo, Jinjie;Huang, Yaqun;Chen, Jingtang;Li, Suzhen;Zhou, Xiaojin;Yang, Wenzhu;Fan, Yunliu;Chen, Rumei

作者机构:

关键词: ZmZIP7;Overexpression;Arabidopsis;Expression profiling;Zinc staining;Zn/Fe homeostasis

期刊名称:PLANT PHYSIOLOGY AND BIOCHEMISTRY ( 影响因子:4.27; 五年影响因子:4.816 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Iron (Fe) and zinc (Zn) are important micronutrients for plant growth and development. Zinc-regulated transporters and the iron-regulated transporter-like protein (ZIP) are necessary for the homeostatic regulation of these metal micronutrients. In this study, the physiological function of ZmZIP7 which encodes a ZIP family transporter was characterized. We detected the expression profiles of ZmZIP7 in maize, and found that the accumulation of ZmZIP7 in root, stem, leaf, and seed was relatively higher than tassel and young ear. ZmZIP7 overexpression transgenic Arabidopsis lines were generated and the metal contents in transgenic and wild-type (WT) plants were examined using inductively coupled plasma atomic emission spectroscopy (ICP-OES) and Zinpyr-1 staining. Fe and Zn concentrations were elevated in the roots and shoots of ZmZIP7-overexpressing plants, while only Fe content was elevated in the seeds. We also analyzed the expression profiles of endogenous genes associated with metal homeostasis. Both endogenic Fe-deficiency inducible genes and the genes responsible for Zn and Fe transport and storage were stimulated in ZmZIP7 transgenic plants. In conclusion, ZmZIP7 encodes a functional Zn and Fe transporter, and ectopic overexpression of ZmZIP7 in Arabidopsis stimulate endogenous Fe and Zn uptake mechanisms, thereby facilitating both metal uptake and homeostasis. Our results contribute to improved understanding of ZIP family transporter functions and suggest that ZmZIP7 could be used to enhance Fe levels in grains. (C) 2016 Elsevier Masson SAS. All rights reserved.

分类号: Q945`Q946

  • 相关文献

[1]Peanut (Arachis hypogaea L.) Omics and Biotechnology in China. Wang, Xing-Jun,Xia, Han,Wan, Shu-Bo,Zhao, Chuan-Zhi,Li, Ai-Qin,Wang, Xing-Jun,Xia, Han,Wan, Shu-Bo,Zhao, Chuan-Zhi,Li, Ai-Qin,Wang, Xing-Jun,Xia, Han,Wan, Shu-Bo,Zhao, Chuan-Zhi,Li, Ai-Qin,Liu, Shuan-Tao. 2011

[2]Gene and protein expression profiling analysis of young spike development in large spike wheat germplasms. Chen Dan,Zhang Jin-peng,Liu Wei-hua,Wu Xiao-yang,Yang Xin-ming,Li Xiu-quan,Lu Yu-qing,Li Li-hui,Chen Dan. 2016

[3]Cloning, ligand-binding, and temporal expression of ecdysteroid receptors in the diamondback moth, Plutella xylostella. Tang, Baozhen,Dong, Wei,Liang, Pei,Gao, Xiwu,Dong, Wei,Zhou, Xuguo. 2012

[4]A novel functional gene associated with cold tolerance at the seedling stage in rice. Zhao, Junliang,Zhang, Shaohong,Dong, Jingfang,Yang, Tifeng,Mao, Xingxue,Liu, Qing,Wang, Xiaofei,Liu, Bin,Zhao, Junliang,Zhang, Shaohong,Dong, Jingfang,Yang, Tifeng,Mao, Xingxue,Liu, Qing,Wang, Xiaofei,Liu, Bin. 2017

[5]Genome-wide analysis of the Solanum tuberosum (potato) trehalose-6-phosphate synthase (TPS) gene family: evolution and differential expression during development and stress. Xu, Yingchun,Wang, Yanjie,Jin, Qijiang,Mattson, Neil,Yang, Liu. 2017

[6]Functional genomics to study stress responses in crop legumes: progress and prospects. Kudapa, Himabindu,Ramalingam, Abirami,Nayakoti, Swapna,Varshney, Rajeev K.,Ramalingam, Abirami,Chen, Xiaoping,Liang, Xuanqiang,Varshney, Rajeev K.,Zhuang, Wei-Jian,Kahl, Guenter,Kahl, Guenter,Edwards, David,Varshney, Rajeev K.. 2013

[7]Genome-wide transcriptome analysis of two maize inbred lines under drought stress. Zheng, Jun,Liu, Yunjun,Wang, Guoying,Zheng, Jun,Liu, Yunjun,Wang, Guoying,Fu, Junjie,Gou, Mingyue,Huai, Junling,Jian, Min,Guo, Xiying,Dong, Zhigang,Wang, Guoying,Huang, Quansheng,Wang, Hongzhi.

[8]Genome-wide identification and evolutionary analysis of leucine-rich repeat receptor-like protein kinase genes in soybean. Qiu, Li-Juan. 2016

[9]Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) gene family in maize. Li, Suzhen,Huang, Yaqun,Zhu, Liying,Zhao, Yongfeng,Guo, Jinjie,Chen, Jingtang,Li, Suzhen,Zhou, Xiaojin,Zhang, Shaojun,Chen, Rumei. 2013

[10]Genome-wide identification, classification and expression profiling of nicotianamine synthase (NAS) gene family in maize. Zhou, Xiaojin,Zhao, Qianqian,Liu, Xiaoqing,Zhang, Shaojun,Sun, Cheng,Fan, Yunliu,Zhang, Chunyi,Chen, Rumei,Zhou, Xiaojin,Zhao, Qianqian,Liu, Xiaoqing,Zhang, Shaojun,Sun, Cheng,Fan, Yunliu,Zhang, Chunyi,Chen, Rumei,Li, Suzhen. 2013

[11]Genome-wide analysis of WRKY gene family in the sesame genome and identification of the WRKY genes involved in responses to abiotic stresses. Li, Donghua,Liu, Pan,Yu, Jingyin,Wang, Linhai,Dossa, Komivi,Zhang, Yanxin,Zhou, Rong,Wei, Xin,Zhang, Xiurong,Dossa, Komivi,Wei, Xin. 2017

[12]Evolutionary history and functional divergence of the cytochrome P450 gene superfamily between Arabidopsis thaliana and Brassica species uncover effects of whole genome and tandem duplications. Yu, Jingyin,Tehrim, Sadia,Wang, Linhai,Dossa, Komivi,Zhang, Xiurong,Liao, Boshou,Dossa, Komivi,Ke, Tao. 2017

[13]Identification, bioinformatic analysis and expression profiling of candidate mRNA-like non-coding RNAs in Sus scrofa. Xiao, Bang,Zhang, Xingju,Li, Yong,Tang, Zhonglin,Yang, Shulin,Mu, Yulian,Cui, Wentao,Ao, Hong,Li, Kui,Xiao, Bang. 2009

[14]Genome-wide analysis of the TPX2 family proteins in Eucalyptus grandis. Gan, Siming,Du, Pingzhou,Yao, Yuan,Wang, Yuqi,Du, Pingzhou,Yao, Yuan,Xie, Qiaoli,Wu, Ai-Min,Du, Pingzhou,Yao, Yuan,Xie, Qiaoli,Wu, Ai-Min,Du, Pingzhou,Wang, Jinyan,Zhang, Baolong,Kumar, Manoj,Wang, Yuqi. 2016

[15]Isolation, structural analysis, and expression characteristics of the maize nuclear factor Y gene families. Zhang, Zhongbao,Li, Xianglong,Zhang, Chun,Wu, Zhongyi,Zou, Huawen,Wu, Zhongyi.

[16]Identification and Characterization of 12 Mitogen-activated Protein Kinase Genes Implicated in Stress Responses in Cherry Rootstocks. Zong, Xiaojuan,Wang, Jiawei,Xu, Li,Wei, Hairong,Chen, Xin,Zhu, Dongzi,Tan, Yue,Liu, Qingzhong.

[17]Transcript profiling of a dominant male sterile mutant (Ms-cd1) in cabbage during flower bud development. Lou, Ping,Kang, Jungen,Zhang, Guoyu,Bonnema, Guusje,Fang, Zhiyuan,Wang, Xiaowu. 2007

[18]Genome-wide characterization and expression profiling of the NAC genes under abiotic stresses in Cucumis sativus. Zhang, Xiao Meng,Yu, Hong Jun,Sun, Chao,Deng, Jie,Zhang, Xue,Liu, Peng,Li, Yun Yun,Li, Qiang,Jiang, Wei Jie,Sun, Chao,Jiang, Wei Jie.

[19]Genome-wide characterization of the SiDof gene family in foxtail millet (Setaria italica). Zhang, Li,Liu, Baoling,Li, Runzhi,Zhang, Aiying,Zheng, Gewen.

[20]Overexpression of cotton (Gossypium hirsutum) dirigent1 gene enhances lignification that blocks the spread of Verticillium dahliae. Haiyan Shi,Zhihao Liu,Li Zhu,Chaojun Zhang,Yun Chen,Ying Zhou,Fuguang Li,Xuebao Li. 2012

作者其他论文 更多>>