Effects of deficit irrigation and plant density on the growth, yield and fiber quality of irrigated cotton

文献类型: 外文期刊

第一作者: Zhang, Dongmei

作者: Zhang, Dongmei;Luo, Zhen;Li, Weijiang;WeiTang;Dong, Hezhong;Liu, Suhua

作者机构:

关键词: Cotton;Deficit irrigation;Plant density;Water use efficiency;Yield

期刊名称:FIELD CROPS RESEARCH ( 影响因子:5.224; 五年影响因子:6.19 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Deficit irrigation is a new strategy to increase water use efficiency of cotton in arid areas, but it is not clear if it interacts with plant density. The objective of this study was to determine the effects of deficit irrigation and plant density as well as their interaction on the growth, yield and fiber quality of irrigated cotton. Two field experiments were conducted at three sites in 2013 and one site from 2014 to 2015 in an arid area of Xinjiang. A randomized complete block design with three replicates was used to determine the effects of 6 irrigation regimes on seedcotton yield in the first experiment, while a split-plot design was used in the second experiment with the main plots assigned to irrigation regime (saturation, regular and deficit) and the subplots to plant density (high, medium and low) to examine cotton yield, fiber quality and water productivity as affected by plant density under deficit irrigation. Averaged across the three sites, drip irrigation ranging from 3650 to 4700 m(3)/ha did not significantly affect cotton yield, but seedcotton yield under 3650 m(3)/ha in Si was 6.3% lower than that under 4000 m(3)/ha. Thus, it is quite appropriate to regularly drip-irrigate at 4000 m(3)/ha in the experimental area. Deficit irrigation at high plant density also maintained a relatively higher leaf area index (LAI) and net assimilation rate (NAR), particularly at late stages of plant growth and development, than saturation or regular irrigation. Plant density ranging from 18 to 24 plants/m(2) produced more seedcotton than 12 plants/m(2) under regular irrigation. Increasing irrigation to saturation levels had little effects on cotton yield regardless of plant density; saturation irrigation at high plant density even reduced cotton yield compared with regular irrigation at medium plant density. Under deficit irrigation, the high plant density produced 9.1-17% greater yield and 9.3-16.8% higher irrigation water productivity (IWP) than low or medium plant density, and comparable yield to medium or high plant density under regular irrigation. This high yield under deficit irrigation at high plant density was due to increased plant biomass occasioned by high plant population and improved harvest index. Deficit irrigation did not affect fiber quality in 2014, but reduced fiber length and increased fiber micronaire value in 2015. Conclusively, use of high plant density under deficit irrigation can be a promising alternative for water saving without compromising cotton yield under arid conditions. (C) 2016 Elsevier B.V. All rights reserved.

分类号: S

  • 相关文献

[1]Effects of Soil Salinity and Plant Density on Yield and Leaf Senescence of Field-Grown Cotton. Zhang, H. J.,Dong, H. Z.,Li, W. J.,Zhang, D. M.,Zhang, H. J.. 2012

[2]Yield, quality and leaf senescence of cotton grown at varying planting dates and plant densities in the Yellow River Valley of China. Dong, HZ,Li, WJ,Tang, W,Li, ZH,Zhang, DM,Niu, YH. 2006

[3]Effects of plant density and nitrogen and potassium fertilization on cotton yield and uptake of major nutrients in two fields with varying fertility. Dong, Hezhong,Kong, Xiangqiang,Li, Weijiang,Tang, Wei,Zhang, Dongmei. 2010

[4]Peach yield and fruit quality is maintained under mild deficit irrigation in semi-arid China. Zhou Han-mi,Zhao Na,Yin Dong-xue,Zhang Fu-cang,Wu Li-feng,Xiang You-zhen,Li Zhi-jun,Kjelgren, Roger,Gong Dao-zhi. 2017

[5]Monitoring the Plant Density of Cotton with Remotely Sensed Data. Bai, Junhua,Li, Shaokun,Bai, Junhua,Li, Jing,Bai, Junhua. 2011

[6]Competitive yield and economic benefits of cotton achieved through a combination of extensive pruning and a reduced nitrogen rate at high plant density. Dai, Jianlong,Li, Weijiang,Zhang, Dongmei,Tang, Wei,Li, Zhenhuai,Lu, Hequan,Kong, Xiangqiang,Luo, Zhen,Xu, Shizhen,Xin, Chengsong,Dong, Hezhong.

[7]Manipulation of dry matter accumulation and partitioning with plant density in relation to yield stability of cotton under intensive management. Dai, Jianlong,Li, Weijiang,Tang, Wei,Zhang, Dongmei,Li, Zhenhuai,Lu, Hequan,Eneji, A. Egrinya,Dong, Hezhong.

[8]High planting density benefits to mechanized harvest and nitrogen application rates of oilseed rape (Brassica napus L.). Li, Yin Shui,Yu, Chang Bing,Zhu, Shan,Xie, Li Hua,Hu, Xiao Jia,Liao, Xing,Liao, Xiang Sheng,Che, Zhi.

[9]Modeling the effects of plant density on maize productivity and water balance in the Loess Plateau of China. Ren, Xinmao,Sun, Dongbao,Wang, Qingsuo.

[10]Study on the Relationship between Yield Formation and Water Use Efficiency of Cotton by Mulched Drip Irrigation in Xinjiang. Deng Zhong,Bai Dan,Feng Junjie,Deng Zhong,Zhai Guoliang,Feng Junjie,Zhang Wenzheng. 2012

[11]Effect of new irrigation technology on the physiology and water use efficiency of potato by Reclaimed Water Irrigation. Qi, Xuebin,Huang, Zongdong,Qiao, Dongmei,Li, Ping,Zhao, Zhijuan,Fan, Tao,Wu, Haiqing,Fan, Xiangyang,Hu, Chao,Zhu, Donghai,Wang, Xin. 2013

[12]Influence of continuous plastic film mulching on yield, water use efficiency and soil properties of rice fields under non-flooding condition. Li, Yong-Shan,Wu, Liang-Huan,Zhao, Li-Mei,Lu, Xing-Hua,Fan, Qiao-Lan,Zhang, Fu-Suo. 2007

[13]Effects of Tillage Practices on Water Consumption, Water Use Efficiency and Grain Yield in Wheat Field. Zheng Cheng-yan,Yu Zhen-wen,Shi Yu,Cui Shi-ming,Wang Dong,Zhang Yong-li,Zheng Cheng-yan,Zhao Jun-ye. 2014

[14]Improving Water Use Efficiency of Wheat Crop Varieties in the North China Plain: Review and Analysis. Mei Xu-rong,Zhong Xiu-li,Liu Xiao-ying,Vincent, Vadez. 2013

[15]Drip Irrigation Scheduling for Tomato Grown in Solar Greenhouse Based on Pan Evaporation in North China Plain. Liu Hao,Duan Ai-wang,Sun Jing-sheng,Wang Yan-cong,Sun Chi-tao,Li Fu-sheng. 2013

[16]Value of groundwater used for producing extra grain in North China Plain. Zhao, Zhigan,Qin, Xin,Zhang, Yinghua,Wang, Zhimin,Zhao, Zhigan,Zang, Hecang,Chen, Chao.

[17]A simplified pruning method for profitable cotton production in the Yellow River valley of China. Dai, Jianlong,Luo, Zhen,Li, Weijiang,Tang, Wei,Zhang, Dongmei,Lu, Hequan,Li, Zhenhuai,Xin, Chengsong,Kong, Xiangqiang,Eneji, A. Egrinya,Dong, Hezhong.

[18]Overexpression of an Apocynum venetum DEAD-Box Helicase Gene (AvDH1) in Cotton Confers Salinity Tolerance and Increases Yield in a Saline Field. Jie Chen,Sibao Wan,Huaihua Liu,Shuli Fan,Yujuan Zhang,Wei Wang,Minxuan Xia,Rui Yuan,Fenni Deng,Fafu Shen. 2016

[19]Spatial distribution of light interception by different plant population densities and its relationship with yield. Huiyun Xue,Yingchun Han,Yabing Li,Guoping Wang,Lu Feng,Zhengyi Fan,Wenli Du,Beifang Yang,Cougui Cao,Shuchun Mao.

[20]Inorganic fertilizer application ensures high crop yields in modern agriculture: A large-scale field case study in Central China. Wang, Weini,Lu, Jianwei,Ren, Tao,Li, Yinshui,Zou, Juan,Su, Wei,Li, Xiaokun,Li, Yinshui,Zou, Juan. 2012

作者其他论文 更多>>