Progress in improving stem lodging resistance of Chinese wheat cultivars

文献类型: 外文期刊

第一作者: Zhang, Yu

作者: Zhang, Yu;Zhang, Yu;Xu, Weigang;Wang, Huiwei;Fang, Yuhui;Dong, Haibin;Qi, Xueli

作者机构:

关键词: Wheat;Genetic improvement;Lodging resistance;Stem strength

期刊名称:EUPHYTICA ( 影响因子:1.895; 五年影响因子:2.181 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Lodging is one of the most important factors that reduce wheat grain yields. To improve lodging resistance, increasing the strength of wheat stems has been an important breeding objective. To assess the rate of genetic improvement of the character, 30 wheat accessions, varying from landraces to cultivars that have been widely grown in Henan Province, China during the last 70 years, were tested for several parameters of lodging resistance in a two-year experiment. Stem strength, morphological and anatomical traits, and chemical composition were measured. The results showed that stem strength, both at anthesis and 25 days thereafter, has increased significantly during this period with average annual genetic gains of 1.07 and 0.87 %, respectively. Compared with older wheat cultivars, stem walls of modern cultivars are thicker, and the lignin content is higher. Grain yield has been significantly increased over the last 70 years, and the results of multiple regression analysis indicated that the genetic improvement of grain yield was associated with the increase in stem strength and the decrease in plant height.

分类号: S3

  • 相关文献

[1]Lodging Resistance of Japonica Rice (Oryza Sativa L.): Morphological and Anatomical Traits due to top-Dressing Nitrogen Application Rates. Zhang, Wujun,Wu, Longwei,Wu, Xiaoran,Ding, Yanfeng,Li, Ganghua,Weng, Fei,Liu, Zhenghui,Tang, She,Ding, Chengqiang,Wang, Shaohua,Zhang, Wujun,Li, Jingyong. 2016

[2]Progress in genetic improvement of grain yield and related physiological traits of Chinese wheat in Henan Province. Zhang, Yu,Zhang, Yu,Xu, Weigang,Wang, Huiwei,Dong, Haibin,Qi, Xueli,Zhao, Mingzhong,Fang, Yuhui,Gao, Chong,Hu, Lin.

[3]Inheritance of stem strength and its correlations with culm morphological traits in wheat (Triticum aestivum L.). Yao, Jinbao,Ma, Hongxiang,Zhang, Pingping,Ren, Lijuan,Yang, Xueming,Yao, Guocai,Zhang, Peng,Zhou, Miaoping. 2011

[4]Quantitative trait loci analysis of stem strength and related traits in soybean. Chen, Haifeng,Shan, Zhihui,Sha, Aihua,Wu, Baoduo,Yang, Zhonglu,Chen, Shuilian,Zhou, Rong,Zhou, Xinan.

[5]Quantitative trait loci (QTL) of stem strength and related traits in a doubled-haploid population of wheat (Triticum aestivum L.). Hai, L,Guo, HH,Xiao, SH,Jiang, GL,Zhang, XY,Yan, CS,Xin, ZY,Jia, JZ. 2005

[6]High-level hemicellulosic arabinose predominately affects lignocellulose crystallinity for genetically enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants. Li, Fengcheng,Zhang, Mingliang,Guo, Kai,Hu, Zhen,Zhang, Ran,Feng, Yongqing,Yi, Xiaoyan,Zou, Weihua,Wang, Lingqiang,Wu, Changyin,Xie, Guosheng,Peng, Liangcai,Li, Fengcheng,Zhang, Mingliang,Guo, Kai,Hu, Zhen,Zhang, Ran,Feng, Yongqing,Yi, Xiaoyan,Zou, Weihua,Wang, Lingqiang,Wu, Changyin,Xie, Guosheng,Peng, Liangcai,Li, Fengcheng,Zhang, Mingliang,Guo, Kai,Hu, Zhen,Zhang, Ran,Feng, Yongqing,Yi, Xiaoyan,Zou, Weihua,Wang, Lingqiang,Xie, Guosheng,Peng, Liangcai,Li, Fengcheng,Zhang, Mingliang,Hu, Zhen,Zhang, Ran,Feng, Yongqing,Yi, Xiaoyan,Zou, Weihua,Wang, Lingqiang,Xie, Guosheng,Peng, Liangcai,Guo, Kai,Wu, Changyin,Tian, Jinshan,Lu, Tiegang.

[7]Morphological, anatomical, and physiological characteristics involved in development of the large culm trait in rice. Wu, Li-Li,Chen, Kun-Ming,Liu, Zhong-Li,Zhou, Cong-Yi,Wang, Jun-Min. 2011

[8]Research progress on reduced lodging of high-yield and -density maize. Xue Jun,Xie Rui-zhi,Wang Ke-ru,Hou Peng,Ming Bo,Li Shao-kun,Zhang Wang-feng,Gou Ling. 2017

[9]Lodging resistance characteristics of high-yielding rice populations. Zhang, Jun,Li, Ganghua,Song, Yunpan,Liu, Zhenghui,Tang, She,Wang, Shaohua,Ding, Yanfeng,Yang, Congdang,Zheng, Chengyan. 2014

[10]Genetic variability in agronomic traits of a germplasm collection of hulless barley. Zeng, X. Q.. 2015

[11]AtCesA8-driven OsSUS3 expression leads to largely enhanced biomass saccharification and lodging resistance by distinctively altering lignocellulose features in rice. Fan, Chunfen,Feng, Shengqiu,Huang, Jiangfeng,Wang, Yanting,Wu, Leiming,Li, Xukai,Wang, Lingqiang,Tu, Yuanyuan,Xia, Tao,Li, Jingyang,Peng, Liangcai,Fan, Chunfen,Feng, Shengqiu,Huang, Jiangfeng,Wang, Yanting,Wu, Leiming,Li, Xukai,Wang, Lingqiang,Tu, Yuanyuan,Xia, Tao,Peng, Liangcai,Fan, Chunfen,Feng, Shengqiu,Huang, Jiangfeng,Wang, Yanting,Wu, Leiming,Li, Xukai,Wang, Lingqiang,Tu, Yuanyuan,Li, Jingyang,Peng, Liangcai,Xia, Tao,Li, Jingyang,Cai, Xiwen. 2017

[12]Agronomic and physiological contributions to the yield improvement of soybean cultivars released from 1950 to 2006 in Northeast China. Jin, Jian,Liu, Xiaobing,Wang, Guanghua,Mi, Liang,Shen, Zhongbao,Chen, Xueli,Herbert, Stephen J..

[13]Stem lodging parameters of the basal three internodes associated with plant population densities and developmental stages in foxtail millet (Setaria italica) cultivars differing in resistance to lodging. Tian, Bohong,Liu, Yanli,Zhang, Lixin,Li, Hongjie.

[14]Nitrogen fertilizer application affects lodging resistance by altering secondary cell wall synthesis in japonica rice (Oryza sativa). Zhang, Wujun,Wu, Longmei,Ding, Yanfeng,Wu, Xiaoran,Weng, Fei,Li, Ganghua,Liu, Zhenghui,Tang, She,Ding, Chengqiang,Wang, Shaohua,Zhang, Wujun,Yao, Xiong.

[15]Genetic improvement of cotton tolerance to salinity stress. Ma, Xinrong,Dong, Hezhong,Li, Weijiang,Ma, Xinrong. 2011

[16]Creation of targeted inversion mutations in plants using an RNA-guided endonuclease. Zhang, Congsheng,Liu, Changlin,Weng, Jianfeng,Liu, Fang,Li, Xinhai,Xie, Chuanxiao,Zhang, Congsheng,Cheng, Beijiu. 2017

[17]Genetic improvement of grain yield and associated traits in the southern China winter wheat region: 1949 to 2000. Zhu, H. Z.,Cai, S. B.,He, Z. H.,Zhang, X. K.,Xia, X. C.,Zhang, G. S.. 2007

[18]Calreticulin: conserved protein and diverse functions in plants. Jia, Xiao-Yun,He, Li-Heng,Li, Run-Zhi,Jia, Xiao-Yun,Jing, Rui-Lian.

[19]Identification of quantitative trait loci for leaf area and chlorophyll content in maize (Zea mays) under low nitrogen and low phosphorus supply. Cai, Hongguang,Chu, Qun,Yuan, Lixing,Liu, Jianchao,Chen, Xiaohui,Chen, Fanjun,Mi, Guohua,Zhang, Fusuo,Cai, Hongguang.

[20]Effect of environment and genotype on bread-making quality of spring-sown spring wheat cultivars in China. Zhang, Y,He, ZH,Ye, GY,Aimin, Z,Van Ginkel, M. 2004

作者其他论文 更多>>