AvrPm2 encodes an RNase-like avirulence effector which is conserved in the two different specialized forms of wheat and rye powdery mildew fungus

文献类型: 外文期刊

第一作者: Praz, Coraline R.

作者: Praz, Coraline R.;Bourras, Salim;Sanchez-Martin, Javier;Menardo, Fabrizio;Roffler, Stefan;Boni, Rainer;Herren, Gerard;McNally, Kaitlin E.;Parlange, Francis;Oberhaensli, Simone;Fluckiger, Simon;Schafer, Luisa K.;Wicker, Thomas;Keller, Beat;Zeng, Fansong;Xue, Minfeng;Yang, Lijun;Yu, Dazhao;Zeng, Fansong;Xue, Minfeng;Yang, Lijun;Yu, Dazhao;Zeng, Fansong;Xue, Minfeng;Yang, Lijun;Yu, Dazhao;Ben-David, Roi

作者机构:

关键词: avirulence gene;Blumeria graminis;Pm2;powdery mildew;RNAse-like;wheat

期刊名称:NEW PHYTOLOGIST ( 影响因子:10.151; 五年影响因子:10.475 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: There is a large diversity of genetically defined resistance genes in bread wheat against the powdery mildew pathogen Blumeria graminis (B.g.) f. sp.tritici. Many confer race-specific resistance to this pathogen, but until now only the mildew avirulence gene AvrPm3(a2/f2) that is recognized by Pm3a/f was known molecularly. We performed map-based cloning and genome-wide association studies to isolate a candidate for the mildew avirulence gene AvrPm2. We then used transient expression assays in Nicotiana benthamiana to demonstrate specific and strong recognition of AvrPm2 by Pm2. The virulent AvrPm2 allele arose from a conserved 12kb deletion, while there is no protein sequence diversity in the gene pool of avirulent B.g.tritici isolates. We found one polymorphic AvrPm2 allele in B.g.triticale and one orthologue in B.g.secalis and both are recognized by Pm2. AvrPm2 belongs to a small gene family encoding structurally conserved RNase-like effectors, including Avr(a13) from B.g.hordei, the cognate Avr of the barley resistance gene Mla13. These results demonstrate the conservation of functional avirulence genes in two cereal powdery mildews specialized on different hosts, thus providing a possible explanation for successful introgression of resistance genes from rye or other grass relatives to wheat.

分类号: Q94

  • 相关文献

[1]Molecular detection of a gene effective against powdery mildew in the wheat cultivar Liangxing 66. Huang, Jiang,Xu, Hongxing,An, Diaoguo,Huang, Jiang,Zhao, Zihui,Song, Fengjing,Wang, Xiaoming,Huang, Yan,Li, Hongjie,Huang, Jiang,Huang, Yan.

[2]Identification and molecular mapping of PmHNK54: a novel powdery mildew resistance gene in common wheat. Xu, Weigang,Li, Chunxin,Hu, Lin,Wang, Huiwei,Dong, Haibin,Zhang, Jianzhou,Zan, Xiangcun,Li, Chunxin. 2011

[3]Molecular cytogenetic characterization of a new wheat-rye 4R chromosome translocation line resistant to powdery mildew. An, Diaoguo,Ma, Pengtao,Luo, Qiaoling,Xu, Hongxing,Xu, Yunfeng,Zheng, Qi,Lv, Zhenling,Li, Bin,Li, Lihui,Zhou, Yilin.

[4]Marker-Assisted Development and Evaluation of Near-Isogenic Lines for Broad-Spectrum Powdery Mildew Resistance Gene Pm2b Introgressed into Different Genetic Backgrounds of Wheat. Xu, Hongxing,Cao, Yanwei,Xu, Yunfeng,Ma, Pengtao,Ma, Feifei,Song, Liping,An, Diaoguo,Cao, Yanwei,Li, Lihui. 2017

[5]Molecular cloning, functional verification, and evolution of TmPm3, the powdery mildew resistance gene of Triticum monococcum L.. Zhao, C. Z.,Li, Y. H.,Dong, H. T.,Geng, M. M.,Liu, W. H.,Li, F.,Ni, Z. F.,Xie, C. J.,Sun, Q. X.,Zhao, C. Z.,Dong, H. T.,Geng, M. M.,Liu, W. H.,Li, F.,Ni, Z. F.,Xie, C. J.,Sun, Q. X.,Zhao, C. Z.,Wang, X. J.. 2016

[6]Molecular Characterization of a New Wheat-Thinopyrum intermedium Translocation Line with Resistance to Powdery Mildew and Stripe Rust. Zhan, Haixian,Li, Guangrong,Pan, Zhihui,Yang, Zujun,Zhan, Haixian,Zhang, Xiaojun,Hu, Jin,Li, Xin,Qiao, Linyi,Guo, Huijuan,Chang, Zhijian,Jia, Juqing,Chang, Zhijian. 2015

[7]Gene expression profiling related to powdery mildew resistance in wheat with the method of suppression subtractive hybridization. Luo, M,Kong, XY,Huo, NX,Zhou, RH,Jia, JZ. 2002

[8]Comparative analysis of early H2O2 accumulation in compatible and incompatible wheat-powdery mildew interactions. Li, AL,Wang, ML,Zhou, RH,Kong, XY,Huo, NX,Wang, WS,Jia, JZ. 2005

[9]Analysis of differential transcriptional profiling in wheat infected by Blumeria graminis f. sp tritici using GeneChip. Wang, Jun-Mei,Liu, Hong-Yan,Wang, Jun-Mei,Liu, Hong-Yan,Xu, Hong-Ming,Li, Min,Wang, Jun-Mei,Liu, Hong-Yan,Kang, Zhen-Sheng,Kang, Zhen-Sheng,Kang, Zhen-Sheng. 2012

[10]Microsatellite marker identification of a Triticum aestivum Aegilops umbellulata substitution line with powdery mildew resistance. Zhu, Zhendong,Zhou, Ronghua,Kong, Xiuying,Kong, Xiuying,Dong, Yuchen,Jia, Jizeng. 2006

[11]Genome-wide identification and functional prediction of novel and fungi-responsive lincRNAs in Triticum aestivum. Zhang, Hong,Hu, Weiguo,Hao, Jilei,Lv, Shikai,Wang, Changyou,Tong, Wei,Wang, Yajuan,Wang, Yanzhen,Liu, Xinlun,Ji, Wanquan,Hu, Weiguo. 2016

[12]Intercropping influenced the occurrence of stripe rust and powdery mildew in wheat. Luo, Huisheng,Jin, Ming'an,Jin, Shelin,Jia, Qiuzhen,Zhang, Bo,Huang, Jin,Wang, Xiaoming,Sun, Zhenyu,Shang, Xunwu,Cao, Shiqin,Duan, Xiayu,Zhou, Yilin,Chen, Wanquan,Liu, Taiguo.

[13]Molecular cytogenetic identification of a wheat-Thinopyron intermedium (Host) Barkworth & DR Dewey partial amphiploid resistant to powdery mildew. Wang, HG,Zhang, XY,Li, XF,Li, DY,Duan, XY,Zhou, YL. 2005

[14]Microsatellite markers linked to 2 powdery mildew resistance genes introgressed from Triticum carthlicum accession PS5 into common wheat. Zhu, ZD,Zhou, RH,Kong, XY,Dong, YC,Jia, JZ. 2005

[15]Leaf rust resistance gene LR34 is involved in powdery mildew resistance of CIMMYT bread wheat line Saar. Lillemo, M.,Singh, R. P.,Huerta-Espino, J.,He, Z. H.,Brown, J. K. M.. 2007

[16]Identification of microsatellite markers linked to powdery mildew resistance gene Pm2 in wheat. Qiu, Y. C.,Sun, X. L.,Zhou, R. H.,Kong, X. Y.,Zhang, S. S.,Jia, J. Z.. 2006

[17]A cDNA-AFLP based strategy to identify transcripts associated with avirulence in Phytophthora infestans. Guo, J,Jiang, RHY,Kamphuis, LG,Govers, F. 2006

[18]Analysis of the diversity and function of the alleles of the rice blast resistance genes Piz-t, Pita and Pik in 24 rice cultivars. Wang Yan,Wang Xiao-xi,Liu Zhi-heng,Wang Yan,Zhao Jia-ming,Zhang Li-xia,Wang Ping,Wang Hui,Zheng Wen-jing,Wang Shi-wei. 2016

[19]QTL Mapping for Adult Plant Resistance to Powdery Mildew in Italian Wheat cv. Strampelli. Asad Muhammad Azeem,BAI Bin,LAN Cai-xia,YAN Jun,XIA Xian-chun,ZHANG Yong,HE Zhong-hu. 2013

[20]Molecular detection of rye (Secale cereale L.) chromatin in wheat line 07jian126 (Triticum aestivum L.) and its association to wheat powdery mildew resistance. Long, Hai,Zhang, Jie,Deng, Guangbing,Pan, Zhifen,Yu, Maoqun,Yu, Shuiyang,Zhang, Erliang,Yang, Hong,Zhang, Jie.

作者其他论文 更多>>