Investigating the mechanisms of glyphosate resistance in goosegrass (Eleusine indica (L.) Gaertn.) by RNA sequencing technology

文献类型: 外文期刊

第一作者: Huang, Hongjuan

作者: Huang, Hongjuan;Wei, Shouhui;Huang, Zhaofeng;Wang, Xu;Zhang, Chaoxian

作者机构:

关键词: transcriptomics;next-generation sequencing;herbicide resistance;glyphosate;(Eleusine indica(L.)Gaertn.)

期刊名称:PLANT JOURNAL ( 影响因子:6.417; 五年影响因子:7.627 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Glyphosate is an important non-selective herbicide that is in common use worldwide. However, evolved glyphosate-resistant (GR) weeds significantly affect crop yields. Unfortunately, the mechanisms underlying resistance in GR weeds, such as goosegrass (Eleusine indica (L.) Gaertn.), an annual weed found worldwide, have not been fully elucidated. In this study, transcriptome analysis was conducted to further assess the potential mechanisms of glyphosate resistance in goosegrass. The RNA sequencing libraries generated 24 597 462 clean reads. De novo assembly analysis produced 48 852 UniGenes with an average length of 847 bp. All UniGenes were annotated using seven databases. Sixteen candidate differentially expressed genes selected by digital gene expression analysis were validated by quantitative real-time PCR (qRT-PCR). Among these UniGenes, the EPSPS and PFK genes were constitutively up-regulated in resistant (R) individuals and showed a higher copy number than that in susceptible (S) individuals. The expressions of four UniGenes relevant to photosynthesis were inhibited by glyphosate in S individuals, and this toxic response was confirmed by gas exchange analysis. Two UniGenes annotated as glutathione transferase (GST) were constitutively up-regulated in R individuals, and were induced by glyphosate both in R and S. In addition, the GST activities in R individuals were higher than in S. Our research confirmed that two UniGenes (PFK,EPSPS) were strongly associated with target resistance, and two GST-annotated UniGenes may play a role in metabolic glyphosate resistance in goosegrass.

分类号: Q94

  • 相关文献

[1]Transcriptomics analysis of the flowering regulatory genes involved in the herbicide resistance of Asia minor bluegrass (Polypogon fugax). Zhou, Fengyan,Zhang, Yong,Wang, Mei,Gao, Tongchun,Tang, Wei. 2017

[2]Identification of Metabolites and Transcripts Involved in Salt Stress and Recovery in Peanut. Cui, Feng,Liu, Yiyang,Han, Yan,Wan, Shubo,Li, Guowei,Cui, Feng,Liu, Yiyang,Han, Yan,Wan, Shubo,Li, Guowei,Sui, Na,Liu, Shanshan,Duan, Guangyou. 2018

[3]Transcriptome analysis of gene expression patterns during embryonic development in golden cuttlefish (Sepia esculenta). Bian, Li,Liu, Changlin,Chen, Siqing,Zhao, Fazhen,Ge, Jianlong,Tan, Jie. 2018

[4]Functional genomics to study stress responses in crop legumes: progress and prospects. Kudapa, Himabindu,Ramalingam, Abirami,Nayakoti, Swapna,Varshney, Rajeev K.,Ramalingam, Abirami,Chen, Xiaoping,Liang, Xuanqiang,Varshney, Rajeev K.,Zhuang, Wei-Jian,Kahl, Guenter,Kahl, Guenter,Edwards, David,Varshney, Rajeev K.. 2013

[5]Heterologous expression and transcript analysis of gibberellin biosynthetic genes of grasses reveals novel functionality in the GA3ox family. Pearce, Stephen,Dubcovsky, Jorge,Huttly, Alison K.,Prosser, Ian M.,Li, Yi-Dan,Vaughan, Simon P.,Gallova, Barbora,Patil, Archana,Hedden, Peter,Phillips, Andrew L.,Li, Yi-Dan,Coghill, Jane A.,Dubcovsky, Jorge. 2015

[6]Seed Transcriptomics Analysis in Camellia oleifera Uncovers Genes Associated with Oil Content and Fatty Acid Composition. Wang, Kailiang,Yao, Xiaohua,Yin, Hengfu,Zhou, Changfu,Xie, Yunhai. 2018

[7]Transcriptomics Analysis on Excellent Meat Quality Traits of Skeletal Muscles of the Chinese Indigenous Min Pig Compared with the Large White Breed. Liu, Yingzi,Yang, Xiuqin,Jing, Xiaoyan,Liu, Yang,Liu, Di,He, Xinmiao,Wang, Liang,Liu, Di. 2018

[8]TRANSCRIPTOME ANALYSIS OF AN ENDOPARASITOID WASP Cotesia chilonis (HYMENOPTERA: BRACONIDAE) REVEALS GENES INVOLVED IN SUCCESSFUL PARASITISM. Qi, Yixiang,Teng, Ziwen,Gao, Lingfeng,Wu, Shunfan,Huang, Jia,Ye, Gongyin,Fang, Qi,Qi, Yixiang,Teng, Ziwen,Gao, Lingfeng,Wu, Shunfan,Huang, Jia,Ye, Gongyin,Fang, Qi,Ye, Gongyin,Fang, Qi.

[9]Combined transcriptomic and proteomic analysis constructs a new model for light-induced anthocyanin biosynthesis in eggplant (Solanum melongena L.). Li, Jing,Ren, Li,Gao, Zhen,Jiang, Mingmin,Liu, Yang,Zhou, Lu,He, Yongjun,Chen, Huoying,Ren, Li.

[10]Metabolomics and transcriptomics reveal the toxicity of difenoconazole to the early life stages of zebrafish (Danio rerio). Teng, Miaomiao,Zhu, Wentao,Wang, Dezhen,Wang, Yao,Yan, Jin,Zheng, Mingqi,Wang, Chengju,Qi, Suzhen,Dong, Kai. 2018

[11]Genome-wide transcriptomic analysis of a superior biomass-degrading strain of A-fumigatus revealed active lignocellulose-degrading genes. Miao, Youzhi,Liu, Dongyang,Li, Guangqi,Li, Pan,Xu, Yangchun,Shen, Qirong,Zhang, Ruifu,Miao, Youzhi,Liu, Dongyang,Li, Guangqi,Li, Pan,Xu, Yangchun,Shen, Qirong,Zhang, Ruifu,Zhang, Ruifu. 2015

[12]Research Status and Prospect of Burkholderia glumae, the Pathogen Causing Bacterial Panicle Blight. Cui Zhou-qi,Xie Guan-lin,Li Bin,Zhu Bo,Huang Shi-wen. 2016

[13]The Protein Elicitor PevD1 Enhances Resistance to Pathogens and Promotes Growth in Arabidopsis. Khan, Najeeb Ullah,Wang, Ningbo,Yang, Xiufen,Qiu, Dewen. 2016

[14]Soybean Omics and Biotechnology in China. Guo, Yong,Wang, Xiao-Bo,He, Wei,Zhou, Guo-An,Guo, Bing-Fu,Zhang, Le,Liu, Zhang-Xiong,Luo, Zhong-Qin,Wang, Li-Hui,Qiu, Li-Juan. 2011

[15]Flower Development and Sex Determination between Male and Female Flowers in Vernicia fordii. Mao, Yingji,Liu, Wenbo,Chen, Xue,Lu, Weili,Hou, Jinyan,Ni, Jun,Wang, Yuting,Wu, Lifang,Mao, Yingji,Liu, Wenbo,Chen, Xue,Lu, Weili,Wang, Yuting,Wu, Lifang,Xu, Yang,Lu, Weili,Wang, Yuting. 2017

[16]Analyses of the Molecular Mechanisms Associated with Silk Production in Silkworm by iTRAQ-Based Proteomics and RNA-Sequencing-Based Transcriptomics. Wang, Shaohua,You, Zhengying,Che, Jiaqian,Zhang, Yuyu,Qian, Qiujie,Zhong, Boxiong,Feng, Mao,Komatsu, Setsuko.

[17]Novel insights into the molecular mechanisms underlying the resistance of Camellia sinensis to Ectropis oblique provided by strategic transcriptomic comparisons. Wang, Dan,Li, Chun-Fang,Ma, Chun-Lei,Chen, Liang.

[18]Elevated CO2 improves lipid accumulation by increasing carbon metabolism in Chlorella sorokiniana. Sun, Zhilan,Chen, Yi-Feng,Du, Jianchang.

[19]Transcriptome profiling and comparison of maize ear heterosis during the spikelet and floret differentiation stages. Hu, Xiaojiao,Wang, Hongwu,Diao, Xizhou,Liu, Zhifang,Li, Kun,Wu, Yujin,Liang, Qianjin,Wang, Hui,Huang, Changling. 2016

[20]Impact of Glyphosate on the Rhizosphere Microbial Communities of An EPSPS-Transgenic Soybean Line ZUTS31 by Metagenome Sequencing. Lu, Gui-Hua,Cheng, Jing,Zhu, Yin-Ling,Wang, Gu-Hao,Pang, Yan-Jun,Yang, Rong-Wu,Wang, Xiao-Ming,Qi, Jinliang,Yang, Yong-Hua,Hua, Xiao-Mei,Zhang, Lei,Shou, Huixia,Lu, Gui-Hua. 2018

作者其他论文 更多>>