Comparative Transcriptomic Analysis of Grape Berry in Response to Root Restriction during Developmental Stages

文献类型: 外文期刊

第一作者: Leng, Feng

作者: Leng, Feng;Lin, Qiong;Wu, Di;Sun, Chongde;Lin, Qiong;Wang, Shiping;Wang, Dengliang

作者机构:

关键词: grape berry;root restriction;RNA-Seq;transcriptome

期刊名称:MOLECULES ( 影响因子:4.411; 五年影响因子:4.587 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Root restriction improved berry quality by being involved in diverse aspects of grapevine life. However, the molecular mechanism driving this process is not understood very well. In this study, the 'Summer Black' grape berry (Vitis vinifera x V. labrusca) under root restriction was investigated, which showed an increase of total soluble solids (TSS), color index of red grapes (CIRG) value, anthocyanins accumulation, total phenolics and total procyanidins contents during berry development compared with those in control berries. The transcriptomic changes induced by root restriction in 'Summer Black' grape over the course of berry development were analyzed by RNA-Seq method. A total of 29,971 genes were generated in 'Summer Black' grape berry during development, among which, 1606 genes were significantly responded to root restriction. Furthermore, 1264, 313, 141, 246 and 19 sequences were significantly changed at S1, S2, S3, S4 and S5 sample points, respectively. The gene (VIT_04s0023g02290) predicted as a salicylate O-methyltransferase was differentially expressed in all developmental stages. Gene Ontology (GO) enrichment showed that response to organic nitrogen, response to endogenous stimulus, flavonoid metabolic process, phenylpropanoid biosynthetic process and cell wall macromolecule metabolic process were the main significant differential categories. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment revealed plant-pathogen interaction, plant hormone signal transduction, flavone and flavonol biosynthesis, flavonoid biosynthesis and glucosinolate biosynthesis were the main significant differential pathways. The results of the present study provided a genetic base for the understanding of grape berry fruit quality improvement under root restriction.

分类号: O62

  • 相关文献

[1]Transcriptomic Analyses of Ascorbic Acid and Carotenoid Metabolites Influenced by Root Restriction during Grape Berry Development and Ripening. Leng, Feng,Tang, Dandan,Lin, Qiong,Cao, Jinping,Wu, Di,Sun, Chongde,Lin, Qiong,Wang, Shiping,Cao, Jinping.

[2]De novo assembly of pen shell (Atrina pectinata) transcriptome and screening of its genic microsatellites. Sun, Xiujun,Li, Dongming,Liu, Zhihong,Zhou, Liqing,Wu, Biao,Yang, Aiguo,Sun, Xiujun,Li, Dongming,Liu, Zhihong,Zhou, Liqing,Wu, Biao,Yang, Aiguo. 2017

[3]De novo Transcriptome Assembly of Chinese Kale and Global Expression Analysis of Genes Involved in Glucosinolate Metabolism in Multiple Tissue. Wu, Shuanghua,Lei, Jianjun,Chen, Guoju,Cao, Bihao,Chen, Changming,Chen, Hancai. 2017

[4]De Novo Transcriptome Sequencing and the Hypothetical Cold Response Mode of Saussurea involucrata in Extreme Cold Environments. Li, Jin,Liu, Hailiang,Xia, Wenwen,Mu, Jianqiang,Feng, Yujie,Liu, Ruina,Wang, Aiying,Lin, Zhongping,Zhu, Jianbo,Chen, Xianfeng,Liu, Hailiang,Yan, Panyao,Chen, Xianfeng,Lin, Zhongping,Guo, Yong. 2017

[5]Transcriptome sequencing and analysis of major genes involved in calcium signaling pathways in pear plants (Pyrus calleryana Decne.). Lin, Jing. 2015

[6]De Novo Assembly and Characterization of Pericarp Transcriptome and Identification of Candidate Genes Mediating Fruit Cracking in Litchi chinensis Sonn.. Li, Wei-Cai,Zhang, Hong-Na,Shi, Sheng-You,Liu, Li-Qin,Shu, Bo,Liang, Qing-Zhi,Xie, Jiang-Hui,Wei, Yong-Zan,Wu, Jian-Yang. 2014

[7]Comprehensive analysis of RNA-seq data reveals the complexity of the transcriptome in Brassica rapa. Tong, Chaobo,Yu, Jingyin,Huang, Junyan,Dong, Caihua,Hua, Wei,Liu, Shengyi,Wang, Xiaowu,Wu, Jian,Li, Wanshun. 2013

[8]Transcriptome analysis of Cucumis sativus infected by Cucurbit chlorotic yellows virus. Sun, Xinyan,Wang, Zhenyue,Li, Honglian,Han, Weili,Shi, Yan,Gu, Qinsheng. 2017

[9]DE NOVO TRANSCRIPTOME ANALYSIS OF MULBERRY (MORUS L.) UNDER DROUGHT STRESS USING RNA-SEQ TECHNOLOGY. Wang, Heng,Tong, Wei,Feng, Li,Jiao, Qian,Long, Li,Fang, Rongjun,Zhao, Weiguo,Long, Li,Zhao, Weiguo,Fang, Rongjun,Zhao, Weiguo.

[10]Comparative transcriptome analysis of latex from rubber tree clone CATAS8-79 and PR107 reveals new cues for the regulation of latex regeneration and duration of latex flow. Chao, Jinquan,Chen, Yueyi,Wu, Shaohua,Tian, Wei-Min. 2015

[11]RNA-Seq of the xylose-fermenting yeast Scheffersomyces stipitis cultivated in glucose or xylose. Yuan, Tiezheng,Meng, Kun,Yang, Peilong,Shi, Pengjun,Yao, Bin,Ren, Yan,Feng, Yun,Wang, Shaojing,Wang, Lei,Ren, Yan,Feng, Yun,Wang, Shaojing,Wang, Lei,Xie, Daoxin.

[12]Transcriptome analysis of Brassica napus pod using RNA-Seq and identification of lipid-related candidate genes. Xu, Hai-Ming,Kong, Xiang-Dong,Chen, Fei,Huang, Ji-Xiang,Zhao, Jian-Yi,Lou, Xiang-Yang. 2015

[13]Transcriptomic analysis of mouse liver reveals a potential hepato-enteric pathogenic mechanism in acute Toxoplasma gondii infection. He, Jun-Jun,Ma, Jun,Song, Hui-Qun,Huang, Si-Yang,Zhu, Xing-Quan,Elsheikha, Hany M.,Ma, Jun,Huang, Si-Yang,Zhu, Xing-Quan. 2016

[14]Comparative Transcriptome Analysis Reveals Heat-Responsive Genes in Chinese Cabbage (Brassica rapa ssp chinensis). Wang, Aihua,Huang, Xingxue,Li, Xia,Zhou, Guolin,Hu, Jihong,Hu, Jihong,Yan, Zhixiang. 2016

[15]Analysis of global gene expression profiles to identify differentially expressed genes critical for embryo development in Brassica rapa. Zhang, Yu,Peng, Lifang,Wu, Ya,Shen, Yanyue,Wang, Jianbo,Wu, Xiaoming.

[16]RNA-seq analysis of bovine intramuscular, subcutaneous and perirenal adipose tissues. Sheng, Xihui,Ni, Hemin,Liu, Yunhai,Guo, Yong,Li, Junya,Zhang, Lupei.

[17]Transcriptome analysis of rice root heterosis by RNA-Seq. Feng, Yue,Zhan, Xiaodeng,Shen, Xihong,Wu, Weiming,Zhang, Yingxin,Chen, Daibo,Cao, Liyong,Cheng, Shihua,Wang, Huimin,Dai, Gaoxing,Yang, Zhanlie. 2013

[18]Transcriptome sequencing analysis of porcine granulosa cells treated with an anti-inhibin antibody. Lei, Mingming,Cai, Liuping,Li, Hui,Chen, Zhen,Shi, Zhendan. 2017

[19]Transcriptomic analysis of global changes in cytokine expression in mouse spleens following acute Toxoplasma gondii infection. He, Jun-Jun,Ma, Jun,Song, Hui-Qun,Zhou, Dong-Hui,Wang, Jin-Lei,Huang, Si-Yang,Zhu, Xing-Quan,Ma, Jun,Zhu, Xing-Quan.

[20]Comparative Transcriptome Analysis Reveals Differential Transcription in Heat-susceptible and Heat-tolerant Pepper (Capsicum annum L.) Cultivars under Heat Stress. Li, Tao,Xu, Xiaowan,Li, Ying,Wang, Hengming,Li, Zhiliang,Li, Zhenxing,Li, Tao,Xu, Xiaowan.

作者其他论文 更多>>