Isolation and expression features of hexose kinase genes under various abiotic stresses in the tea plant (Camellia sinensis)
文献类型: 外文期刊
第一作者: Li, Na-na
作者: Li, Na-na;Qian, Wen-jun;Wang, Lu;Cao, Hong-li;Hao, Xin-yuan;Yang, Ya-jun;Wang, Xin-chao;Li, Na-na;Wang, Lu;Cao, Hong-li;Hao, Xin-yuan;Yang, Ya-jun;Wang, Xin-chao;Qian, Wen-jun
作者机构:
关键词: Tea plant;Hexokinase;Fructokinase;Abiotic stress;Gene expression
期刊名称:JOURNAL OF PLANT PHYSIOLOGY ( 影响因子:3.549; 五年影响因子:4.164 )
ISSN:
年卷期:
页码:
收录情况: SCI
摘要: Hexokinases (HXKs, EC 2.7.1.1) and fructokinases (FRKs, EC 2.7.1.4) play important roles in carbohydrate metabolism and sugar signaling during the growth and development of plants. However, the HXKs and FRKs in the tea plant (Camellia sinensis) remain largely unknown. In this manuscript, we present the molecular characterization, phylogenetic relationships, conserved domains and expression profiles of four HXK and seven FRK genes of the tea plant. The 11 deduced CsHXK and CsFRK proteins were grouped into six main classes. All of the deduced proteins, except for CsFKR7, possessed putative ATP-binding motifs and a sugar recognition region. These genes exhibited tissue-specific expression patterns, which suggests that they play different roles in the metabolism and development of source and sink tissues in the tea plant. There were variations in CsHXKs and CsFRKs transcript abundance in response to four abiotic stresses: cold, salt, drought and exogenous abscisic acid (ABA). Remarkably, CsHXK3 and CsHXK4 were significantly induced in the leaves and roots under cold conditions, CsHXKl was apparently up regulated in the leaves and roots under salt and drought stresses, and CsHXK3 was obviously stimulated in the leaves and roots under short-term treatment with exogenous ABA. These findings demonstrate that CsHXKs play critical roles in response to abiotic stresses in the tea plant. Our research provides a fundamental understanding of the CsHXK and CsFRK genes of the tea plant and important information for the breeding of stress-tolerant tea cultivars. (C) 2016 Elsevier GmbH. All rights reserved.
分类号: Q94
- 相关文献
作者其他论文 更多>>
-
Revealing the Molecular Regulatory Mechanism of Flavonoid Accumulation in Tender Leaves of Tea Plants by Transcriptomic and Metabolomic Analyses
作者:Shan, Ruiyang;You, Xiaomei;Kong, Xiangrui;Zhang, Yazhen;Li, Xinlei;Chen, Changsong;Zhang, Yongheng;Wang, Lu;Wang, Xinchao
关键词:
Camellia sinensis ; transcriptomics; flavonoids; regulatory network -
Structural characterization and hypolipidemic activity of a hetero-galactan purified from Sanghuangporus vaninii based on modulation of TLR4/NF-κB pathway
作者:Hao, Jie;Zhu, Yanfeng;Li, Zhige;Wang, Lu;Qu, Yidi;Wang, Di;Zhang, Yongfeng;Li, Lanzhou;Wang, Di;Yu, Hailong;Qi, Liangliang
关键词:Sanghuangporus vaninii; Polysaccharide; Hypolipidemic efficacy; Inflammation; TLR4/NF-kappa B
-
Two leucine-rich repeat receptor-like kinases initiate herbivory defense responses in tea plants
作者:Jiang, Qi;Ding, Changqing;Feng, Lingjia;Wu, Zhenwei;Liu, Yujie;He, Lintong;Liu, Chuande;Wang, Lu;Zeng, Jianming;Huang, Jianyan;Ye, Meng
关键词:
-
CsCIPK20 Improves Tea Plant Cold Tolerance by Modulating Ascorbic Acid Synthesis Through Attenuation of CsCSN5-CsVTC1 Interaction
作者:Di, Taimei;Wu, Yedie;Wang, Jie;He, Mingming;Huang, Jianyan;Li, Nana;Hao, Xinyuan;Ding, Changqing;Zeng, Jianming;Yang, Yajun;Wang, Xinchao;Wang, Lu
关键词:ascorbic acid; CsCIPK20; CsVTC1; low temperature
-
CsCBF1/CsZHD9-CsMADS27, a critical gene module controlling dormancy and bud break in tea plants
作者:Hao, Xinyuan;Tang, Junwei;Chen, Yao;Huang, Chao;Zhang, Weifu;Liu, Ying;Wang, Lu;Ding, Changqing;Yang, Yajun;Wang, Xinchao;Chen, Yao;Yue, Chuan;Liu, Ying;Dai, Wenhao;Horvath, David P.
关键词:bud dormancy; bud break; MADS-box; gene function; regulatory network;
Camellia sinensis -
Discovery of novel thiazole-pleuromutilin derivatives with potent antibacterial activity
作者:Qi, Xian-Long;Zhang, He-Chao;Xu, Xiao;Liu, Xi-Wang;Yang, Ya-Jun;Li, Zhun;Li, Jian-Yong
关键词:Pleuromutilin derivatives; Thiazole; Synthesis; Antibacterial activity; Toxicity
-
Exploring Antibacterial Activity of Fish Protein Hydrolysate In Vitro Against Vibrio Strains and Disease Resistance to V. harveyi in Turbot (Scophthalmus maximus)
作者:Wei, Yuliang;Wang, Lu;Li, Yanlu;Ma, Qiang;Liang, Mengqing;Xu, Houguo;Wei, Yuliang;Liang, Mengqing;Xu, Houguo
关键词:antibacterial activity; fish protein hydrolysate; immune response; intestinal microbiota;
Vibrio