Resistance against Fusarium Head Blight in Transgenic Wheat Plants Expressing the ScNPR1 gene

文献类型: 外文期刊

第一作者: Yu, Guihong

作者: Yu, Guihong;Zhang, Xu;Yao, Jingbao;Zhou, MiaoPing;Ma, Hongxiang

作者机构:

关键词: Fusarium head blight;ScNPR1 gene;wheat

期刊名称:JOURNAL OF PHYTOPATHOLOGY ( 影响因子:1.789; 五年影响因子:1.574 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Fusarium head blight (FHB) is a severe global wheat disease that may cause severe yield losses, especially during epidemic years. Transforming the regulatory genes in the metabolic pathways of disease resistance into wheat via transgenic methods is one way to improve resistance to FHB. ScNPR1 (Secale cereale-NPR1), a regulatory gene for systemic acquired resistance (SAR), was isolated from S.cereale cv Jingzhouheimai and transformed into the moderately FHB-susceptible wheat variety Ningmai 13. RT-PCR analysis indicated that the ScNPR1 gene was stably expressed in transgenic plants. An evaluation of the resistance to FHB revealed that six ScNPR1 transgenic lines (NP1, NP2, NP3, NP4, NP5 and NP6) exhibited significantly higher FHB resistance than the wild-type wheat Ningmai 13 and the null-segregated plants. The expression of pathogenesis-related (PR) genes after Fusarium graminearum inoculation was earlier or higher than those in the wild-type variety Ningmai 13. The high expression in the early stages of PR genes should account for the enhanced FHB resistance in the transgenic lines. Our results suggest that overexpression of ScNPR1 could be used to improve FHB resistance in wheat.

分类号: Q945

  • 相关文献

[1]Improvement of resistance to Fusarium head blight by recurrent selection in an intermating breeding spring wheat population using the dominant male-sterile gene ms(2). Yang, ZP,Yang, XY,Huang, DC. 2000

[2]Identification of putative phosphoproteins in wheat spikes induced by Fusarium graminearum. Ding, Lina,Cao, Jun,Zhou, Yang,Yang, Ruiying,Yang, Guoxing,Li, Peng.

[3]Overexpression of wheat lipid transfer protein gene TaLTP5 increases resistances to Cochliobolus sativus and Fusarium graminearum in transgenic wheat. Li, Zhao,Xu, Huijun,Du, Lipu,Zhang, Zengyan,Zhou, Miaoping.

[4]MOLECULAR BREEDING FOR WHEAT FUSARIUM HEAD BLIGHT RESISTANCE IN CHINA. M, Hongxiang,Yao, Jinbao,Zhou, Miaoping,Zhang, Xu,Ren, Lijuan,Yu, Giuhong,Lu, Weizhong.

[5]Molecular characterization of Fusarium head blight resistance from wheat variety Wangshuibai. Zhang, X,Zhou, MP,Ren, LJ,Bai, GH,Ma, HX,Scholten, OE,Guo, PG,Lu, WZ. 2004

[6]Transcriptome-based discovery of pathways and genes related to resistance against Fusarium head blight in wheat landrace Wangshuibai. Xiao, Jin,Jin, Xiahong,Jia, Xinping,Wang, Haiyan,Cao, Aizhong,Pei, Haiyan,Xue, Zhaokun,He, Liqiang,Chen, Qiguang,Wang, Xiue,Jia, Xinping,Zhao, Weiping. 2013

[7]Simultaneous determination of deoxynivalenol, and 15-and 3-acetyldeoxynivalenol in cereals by HPLC-UV detection. Yang, D.,Geng, Z. M.,Yao, J. B.,Zhang, X.,Zhang, P. P.,Ma, H. X.. 2013

[8]A novel virus in the family Hypoviridae from the plant pathogenic fungus Fusarium graminearum. Liu, Liang,Guo, Lihua,Qiu, Dewen,Kondo, Hideki.

[9]Detection and dynamics of different carbendazim-resistance conferring beta-tubulin variants of Gibberella zeae collected from infected wheat heads and rice stubble in China. Liu, Ye,Chen, Xiang,Hamada, Mohamed Sobhy,Yin, Yanni,Ma, Zhonghua,Jiang, Jinhua,Hamada, Mohamed Sobhy. 2014

[10]The tubulin cofactor A is involved in hyphal growth, conidiation and cold sensitivity in Fusarium asiaticum. Zhang, Xiaoping,Chen, Xiang,Yu, Menghao,Yin, Yanni,Ma, Zhonghua,Jiang, Jinhua. 2015

[11]Molecular characterization of a novel mycovirus of the family Tymoviridae isolated from the plant pathogenic fungus Fusarium graminearum. Lin, Yanhong,Zhang, Hailong,Wang, Shuangchao,Qiu, Dewen,Guo, Lihua.

[12]Molecular characterization of a novel hypovirus from the plant pathogenic fungus Fusarium graminearum. Zhang, Hailong,Chen, Xiaoguang,Qiu, Dewen,Guo, Lihua.

[13]Activity of the Fungicide JS399-19 Against Fusarium Head Blight of Wheat and the Risk of Resistance. Chen Yu,Zhou Ming-guo,Chen Yu,Wang Wen-xiang,Zhang Ai-fang,Gu Chun-yan,Gao Tong-chun. 2011

[14]Fusarium in the age of genomics. van der Lee, Theo,Vanheule, Adriaan,Audenaert, Kris,Zhang, Hao,Warris, Sven,van de Geest, Henri.

[15]Molecular cytogenetic analysis of a durum wheat x Thinopyrum distichum hybrid used as a new source of resistance to Fusarium head blight in the greenhouse. Chen, Q,Eudes, F,Conner, RL,Graf, R,Comeau, A,Collin, J,Ahmad, F,Zhou, R,Li, H,Zhao, Y,Laroche, A. 2001

[16]Effects of plant height on type I and type II resistance to fusarium head blight in wheat. Yan, W.,Li, H. B.,Liu, C. J.,Yan, W.,Cai, S. B.,Ma, H. X.,Rebetzke, G. J.,Liu, C. J..

[17]The role of wheat jasmonic acid and ethylene pathways in response to Fusarium graminearum infection. Sun, Yuxin,Xiao, Jin,Jia, Xinping,Ke, Peibei,He, Liqiang,Cao, Aizhong,Wang, Haiyan,Wu, Yufeng,Gao, Xiquan,Wang, Xiue,Jia, Xinping.

[18]Evaluation of tebuconazole for the management of Fusarium head blight in China. Sun, H. -Y.,Zhu, Y. -F,Liu, Y. -Y.,Deng, Y. -Y.,Li, W.,Zhang, A. -X.,Chen, H. -G..

[19]Effect of individual Sumai 3 chromosomes on resistance to scab spread within spikes and deoxynivalenol accumulation within kernels in wheat. Zhou, WC,Kolb, FL,Bai, GH,Domier, LL,Yao, JB.

[20]Quantitative trait loci for resistance to fusarium head blight and deoxynivalenol accumulation in Wangshuibai wheat under field conditions. Ma, H. X.,Zhang, K. M.,Gao, L.,Bai, G. H.,Chen, H. G.,Cai, Z. X.,Lu, W. Z..

作者其他论文 更多>>