Endogenous Hydrogen Sulfide Homeostasis Is Responsible for the Alleviation of Senescence of Postharvest Daylily Flower via Increasing Antioxidant Capacity and Maintained Energy Status

文献类型: 外文期刊

第一作者: Liu, Dan

作者: Liu, Dan;Pan, Jincheng;Shen, Wenbiao;Xu, Sheng;Xu, Sheng;Hu, Huali;Li, Pengxia

作者机构:

关键词: daylily;endogenous hydrogen sulfide homeostasis;senescence;antioxidant capacity;energy status

期刊名称:JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY ( 影响因子:5.279; 五年影响因子:5.269 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: There are limited data concerning the role of endogenous H2S in prolonging the postharvest of vegetables and fruits. Using a fluorescence microscope with a specific probe, we discovered that, during the senescence of postharvest daylily flower, endogenous H2S homeostasis was impaired. The activities of two important synthetic enzymes of H2S, and D-cysteine desulfhydrase, exhibited decreasing tendencies. However, NaHS (a H2S donor) not only blocked the decreased H2S production but also extended the postharvest life of daylilies. These beneficial roles were verified by the alleviation of lipid peroxidation and the increased activities of antioxidant enzymes. Meanwhile, the energy status was sustained, and the respiration rate was decreased. In contrast to NaHS, the addition of an inhibitor of H2S synthesis alone aggravated lipid peroxidation and lowered energy charge. Together, the present study implies that endogenous H2S alleviates senescence of postharvest daylilies via increasing antioxidant capacity and maintained energy status.

分类号: R15`S

  • 相关文献

[1]Hydrogen sulfide delays leaf yellowing of stored water spinach (Ipomoea aquatica) during dark-induced senescence by delaying chlorophyll breakdown, maintaining energy status and increasing antioxidative capacity. Hu, Huali,Liu, Dan,Shen, Wenbiao,Hu, Huali,Li, Pengxia.

[2]Photosynthetic and biochemical activities in flag leaves of a newly developed superhigh-yield hybrid rice (Oryza sativa) and its parents during the reproductive stage. Zhang, C. -J.,Chu, H. -J.,Chen, G. -X.,Shi, D. -W.,Zuo, M.,Wang, J.,Lu, C. -G.,Wang, P.,Chen, L..

[3]Study the effects of drying processes on chemical compositions in daylily flowers using flow injection mass spectrometric fingerprinting method and chemometrics. Liu, Wei,Zhao, Yang,Sun, Jianghao,Chen, Pei,Liu, Wei,Li, Gaoyang,Shan, Yang. 2017

[4]Ploidy variation and karyotype analysis in Hemerocallis spp. (Xanthorrhoeaceae) and implications on daylily breeding. Zhang, C.,Cao, D.,Kang, L.,Duan, J.,Wang, Y.,Ma, X.,Yan, G.,Ma, X.,Yan, G..

[5]Regulation of steroid hormones and energy status with cysteamine and its effect on spermatogenesis. Wang, Yandi,Yu, Shuai,Feng, Yandi,Chu, Meigiang,Cui, Liantao,Li, Lan,Zhang, Pengfei,Shen, Wei,Min, Lingjiang,Wang, Yandi,Zhao, Yong,Yu, Shuai,Feng, Yandi,Chu, Meigiang,Cui, Liantao,Li, Lan,Shen, Wei,Min, Lingjiang,Zhao, Yong,Zhang, Hongfu,Kou, Xin.

[6]Putrescine enhancement of tolerance to root-zone hypoxia in Cucumis sativus: a role for increased nitrate reduction. Shi, Kai,Dine, Xiao-Tao,Zhou, Yan-Hong,Yu, Jing Quan,Dong, De-Kun,Yu, Jing Quan. 2008

[7]Optimal hypobaric treatment delays ripening of honey peach fruit via increasing endogenous energy status and enhancing antioxidant defence systems during storage. Wang, Jinhua,Liu, Yingkun,Song, Lili,Wu, Jiasheng,Wang, Jinhua,Chen, Wenxuan,Xu, Qingqing,Wang, Jie,You, Yanli.

[8]Effects of selenium and sulfur on antioxidants and physiological parameters of garlic plants during senescence. Cheng Bo,Lian Hai-feng,Yu Xin-hui,Sun Ya-li,Sun Xiu-dong,Shi Qing-hua,Liu Shi-qi,Liu Ying-ying. 2016

[9]Cloning and characterization of a gene encoding cysteine proteases from senescent leaves of Gossypium hirsutum. Shen, FF,Yu, SX,Han, XL,Fan, SL.

[10]Regulation of endogenous hormones on post-harvest senescence in transgenic broccoli carrying an antisense or a sense BO-ACO 2 gene. Qin, Feifei,Wang, Cheng-rong,Wang, Ran,Ma, Gang,Qin, Feifei,Qin, Feifei,Xu, Hui-lian. 2009

[11]Characteristics of ribulose-1,5-bisphosphate carboxylase and C4 pathway key enzymes in flag leaves of a super-high-yield hybrid rice and its parents during the reproductive stage. Zhang, C-J.,Chen, L.,Shi, D. -W.,Chen, G. -X.,Lu, C. -G.,Wang, P.,Wang, J.,Chu, H-J,Zhou, Q. -C.,Zuo, M.,Sun, L.. 2007

[12]Transcriptomic response of cowpea bruchids to N-acetylglucosamine-specific lectins. Wang, Li-Hua,Fang, Ji-Chao,Wang, Li-Hua,Chi, Yong Hun,Guo, Feng-Guang,Zhu-Salzman, Keyan,Li-Byarlay, Hongmei,Balfe, Susan,Pittendrigh, Barry R.. 2015

[13]Characterization and mapping of a novel mutant sms1 (senescence and male sterility 1) in rice. Yan, Wenyi,Zeng, Longjun,Peng, Yu,Yan, Dawei,Yang, Weibing,Yang, Donglei,He, Zuhua,Yan, Wenyi,Dong, Yanjun,Yan, Wenyi,Ye, Shenghai,Jin, Qingsheng,Zhang, Xiaoming. 2010

[14]Quantitative Trait Loci Mapping of Dark-Induced Senescence in Winter Wheat (Triticum aestivum). Li, Hongwei,Lin, Fanyun,Wang, Gui,Zheng, Qi,Li, Bin,Li, Zhensheng,Jing, Ruffian. 2012

[15]Effect of BO-ACO 2 gene on post-harvest senescence in transgenic broccoli (Brassica oleracea L. var. italica). Qin, Feifei,Wang, Chengrong,Wang, Ran,Ma, Gang,Qin, Feifei,Qin, Feifei,Xu, Hui-lian. 2011

[16]Programmed cell death is responsible for replaceable bud senescence in chestnut (Castanea mollissima BL.). Wang, Guangpeng,Zhang, Zhihong,Zhao, Guiling,Wang, Guangpeng,Kong, Dejun,Liu, Qingxiang. 2012

[17]The antioxidative defense system is involved in the premature senescence in transgenic tobacco (Nicotiana tabacum NC89). Liu, Yu,Wang, Lu,Liu, Heng,Zhao, Rongrong,Liu, Bin,Zhang, Yuanhu,Fu, Quanjuan. 2016

[18]Effects of post-harvest stigmasterol treatment on quality-related parameters and antioxidant enzymes of green asparagus (Asparagus officinalis L.). Dong, Huanhuan,Wang, Xiangyang,Huang, Jianying,Xing, Jianrong. 2016

[19]Molecular cloning and function analysis of the stay green gene in rice. Jiang, Huawu,Li, Meiru,Liang, Naiting,Yan, Hongbo,Wei, Yubo,Xu, Xinlan,Liu, Jian,Xu, Zhifang,Chen, Fan,Wu, Guojiang.

[20]Sugars in postharvest lotus seeds were modified by 6-benzylaminopurine treatment through altering related enzymes involved in starch-sucrose metabolism. Luo, Shufen,Hu, Huali,Zhang, Leigang,Zhou, Hongsheng,Li, Pengxia.

作者其他论文 更多>>