Biochar characteristics produced from rice husks and their sorption properties for the acetanilide herbicide metolachlor

文献类型: 外文期刊

第一作者: Huang, Yufen

作者: Huang, Yufen;Li, Yanliang;Huang, Lianxi;Huang, Qing;Liu, Zhongzhen;Wei, Lan;Huang, Yufen;Li, Yanliang;Huang, Lianxi;Huang, Qing;Liu, Zhongzhen;Mar, Nyo Nyo

作者机构:

关键词: Rice husk;Biochar;Adsorption;Metolachlor;Pyrolysis temperature;Adsorptionmechanism

期刊名称:ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH ( 影响因子:4.223; 五年影响因子:4.306 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Rice husk biochar (RHBC) was prepared for use as adsorbents for the herbicide metolachlor. The characteristics and sorption properties of metolachlor adsorbed by the RHBC prepared at different pyrolysis temperatures were determined by analysis of physico-chemical characteristics, Fourier transform infrared spectroscopy (FTIR), Boehm titration, scanning electron microscopy (SEM), and thermodynamics and kinetics adsorption. With increasing pyrolysis temperature, the RHBC surface area greatly increased (from 2.57 to 53.08 m(2) g(-1)). RHBC produced at the highest temperature (750 degrees C) had the greatest surface area; SEM also showed the formation of a porous surface on RH-750 biochar. The sorption capacity of RHBC also increased significantly with increasing pyrolysis temperature and was characterized by the Freundlich constant K-f for the adsorption capacity increasing from 125.17-269.46 (pyrolysis at 300 degrees C) to 339.94-765.24 (pyrolysis at 750 degrees C). The results indicated that the surface area and pore diameter of RHBC produced with high pyrolysis temperature (i.e., 750 degrees C) had the greatest impact on the adsorption of metolachlor. The FTIR, Boehm titration, and SEM analysis showed that the greatest number of surface groups were on RHBC produced at the lowest temperature (300 degrees C). The biochars produced at different pyrolysis temperatures had different mechanisms of adsorbing metolachlor, which exhibited a transition from hydrogen bonds dominant at low pyrolytic temperature to pore-filling dominant at higher pyrolytic temperature.

分类号: X5`X

  • 相关文献

[1]Effects of Biochar Amendment on Chloropicrin Adsorption and Degradation in Soil. Wang, Qiuxia,Yan, Dongdong,Fang, Wensheng,Mao, Liangang,Li, Yuan,Ouyang, Canbin,Guo, Meixia,Cao, Aocheng,Wang, Dong. 2016

[2]Ammonium citrate-modified biochar: An adsorbent for La(III) ions from aqueous solution. Wang, Yu-Ying,Lu, Hao-Hao,Liu, Yu-Xue,Yang, Sheng-Mao,Wang, Yu-Ying,Lu, Hao-Hao,Liu, Yu-Xue,Yang, Sheng-Mao.

[3]Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate. Zhang, Jie,Liu, Rongle,Liu, Jia.

[4]Biochars derived from giant reed (Arundo donax L.) with different treatment: characterization and ammonium adsorption potential. Zhao, Yaqi,Huang, Lei,Chen, Yucheng,Zhao, Yaqi,Huang, Lei,Chen, Yucheng. 2017

[5]Characteristics of maize biochar with different pyrolysis temperatures and its effects on organic carbon, nitrogen and enzymatic activities after addition to fluvo-aquic soil. Wang, Xiubin,Zhou, Wei,Liang, Guoqing,Song, Dali,Zhang, Xiaoya.

[6]The Effect of Two Types of Biochars on the Efficacy, Emission, Degradation, and Adsorption of the Fumigant Methyl Isothiocyanate. Cao, Aocheng,Yan, Dongdong,Han, Dawei,Huang, Bin,Li, Jun,Liu, Xiaoman,Guo, Meixia,Wang, Qiuxia. 2017

[7]Application of biochar reduces Ralstonia solanacearum infection via effects on pathogen chemotaxis, swarming motility, and root exudate adsorption. Gu, Yian,Hou, Yugang,Huang, Dapeng,Hao, Zhexia,Wang, Xiaofang,Wei, Zhong,Jousset, Alexandre,Shen, Qirong,Xu, Yangchun,Jousset, Alexandre,Tan, Shiyong,Xu, Dabing,Friman, Ville-Petri.

[8]Adsorption Properties of Nano-MnO2-Biochar Composites for Copper in Aqueous Solution. Zhou, Li,Zhou, Li,Huang, Yifan,Liu, Zhongqi,Song, Zhengguo,Qiu, Weiwen,Sun, Zhanxiang.

[9]A novel function of sanshools: The alleviation of injury from metolachlor in rice seedlings. Zhou, Xiaomao,Wu, Jing,Bai, Lianyang,Tang, Xinke,Li, Jingbo,Bai, Lianyang,Wu, Jing. 2014

[10]Degradable Nursery Containers Made of Rice Husk and Cornstarch Composites. Sun, Enhui,Huang, Hongying,Wu, Guofeng,Chang, Zhizhou,Sunb, Fengwen. 2017

[11]A novel detoxifying agent: Using rice husk carriers to immobilize zearalenone-degrading enzyme from Aspergillus niger FS10. He, Mengling,Li, Yun,Pi, Fuwei,Ji, Jian,He, Xingxing,Zhang, Yinzhi,Sun, Xiulan,Li, Yun.

[12]Effect of rice husk diluted dietary switching on body weight, carcass yield and digestive tract of adult ganders. Lu, J.,Wang, Z. Y.,Yang, H. M.,Shi, S. R.,Zou, J. M.. 2011

[13]Rice husk based porous carbon loaded with silver nanoparticles by a simple and cost-effective approach and their antibacterial activity. Cui, Jianghu,Hu, Yonghui,Li, Fangbai,Yang, Yunhua.

[14]Analytical study on pyrolyzed products of Desmodesmus sp cultivated in BG11. Li Gang,Huang Zhigang,Ji Fang,Xiang Shunan,Zhou Yuguang,Jiang Mengmeng,Zhou Yuguang,Jiang Mengmeng. 2017

[15]Effect of Biochars from Rice Husk, Bran, and Straw on Heavy Metal Uptake by Pot-Grown Wheat Seedling in a Historically Contaminated Soil. Zheng, Ruilun,Xiao, Bo,Chen, Zheng,Wang, Xiaohui,Huang, Yizong,Sun, Guoxin,Cai, Chao. 2013

[16]Biochar Improves Sugarcane Seedling Root and Soil Properties Under a Pot Experiment. Li, Yangrui,Yang, Liu,Li, Yangrui,Yang, Liu,Li, Yangrui,Liao, Fen,Huang, Min,Yang, Litao. 2015

[17]The effects of biochar and hoggery biogas slurry on fluvo-aquic soil physical and hydraulic properties: a field study of four consecutive wheat-maize rotations. Du, Zhenjie,Chen, Xiaomin,Nan, Jiangkuan,Deng, Jianqiang,Du, Zhenjie,Qi, Xuebin,Li, Zhongyang,Du, Zhenjie,Qi, Xuebin,Li, Zhongyang. 2016

[18]Comparative Effects of Biochar, Slag and Ferrous-Mn Ore on Lead and Cadmium Immobilization in Soil. Mehmood, Sajid,Rizwan, Muhammad,Bashir, Saqib,Aziz, Omar,Yong, Li Zhe,Dai, Zhihua,Tu, Shuxin,Ditta, Allah,Akmal, Muhammad,Ahmed, Waqas,Adeel, Muhammad,Imtiaz, Muhammad. 2018

[19]Population and community structure shifts of ammonia oxidizers after four-year successive biochar application to agricultural acidic and alkaline soils. He, Lili,Bi, Yucui,Zhao, Jin,Zhao, Xu,Wang, Shenqiang,Xing, Guangxi,He, Lili,Pittelkow, Cameron M.. 2018

[20]Preparation and Characterization of Camellia Shell Biochar. Qin, Zuodong,Li, Zhizhang,Wang, Meifeng,Duns, Gregory J.,He, Fulin,Luo, Xiaofang,Qin, Zuodong,Qin, Zuodong,Wang, Jianhua,Yang, Shengmao,Wang, Yuying,Zeng, Weixi,Yang, Shengmao,Wang, Yuying,Zeng, Weixi. 2016

作者其他论文 更多>>