Identification and characterization of a novel calreticulin involved in the immune response of the Zhikong scallop, Chlamys farreri

文献类型: 外文期刊

第一作者: Wang, Guanghua

作者: Wang, Guanghua;Zhu, Dongfa;Wang, Guanghua;Yang, Ning;Zhang, Min;Jiang, Zengjie;Jiang, Zengjie

作者机构:

关键词: Chlamys farreri;Calreticulin;Bacteria-binding;Innate immunity

期刊名称:FISH & SHELLFISH IMMUNOLOGY ( 影响因子:4.581; 五年影响因子:4.851 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Calreticulin (CRT) is a multifunctional calcium-binding chaperone shared among vertebrates and invertebrates. In this study, a novel CRT (CfCRT) was identified in the Zhikong scallop Chlamys farreri by rapid amplification of cDNA ends. The full-length cDNA was composed of 1345 bp, which included a 1158 bp open reading frame, a 25 bp 5'-untranslated region (UTR) and a 162 bp 3'-UTR. The predicted molecular mass of CfCRT was 44.8 kDa. CfCRT contained three highly conserved domains (N-, P- and C-domains) essential to the function of CRT. BLAST analysis revealed significant sequence similarity (73%-92%) with CRT proteins from other mollusks. The mRNA transcripts of CfCRT were present in all the tested tissues of Zhikong scallops, with the higher expression level in the hemocytes and mantle. After stimulation by Vibrio anguillarum, the mRNA transcript of CfCRT in hemocytes was significantly upregulated. Recombinant plasmid pBCRT was successfully expressed in Escherichia coli BL21 (DE3). The recombinant (r)CfCRT protein could bind to the surface of several bacteria including the Gram-negative bacteria V. anguillarum, E. coli, and the Gram-positive bacterium Staphylococcus aureus. Moreover, rCfCRT was able to suppress their growth significantly. These results indicate that CfCRT might act as an immune effector in Zhikong scallop innate immunity. (C)2017 Published by Elsevier Ltd.

分类号: S9

  • 相关文献

[1]Gene knockdown by intro-thoracic injection of double-stranded RNA in the brown planthopper, Nilaparvata lugens. Ding, Zhiping,Liu, Zewen,Liu, Shuhua,Yang, Baojun,Zhang, Chengwei.

[2]SjCRT, a recombinant Schistosoma japonicum calreticulin, induces maturation of dendritic cells and a Th1-polarized immune response in mice. Ma, Lizhen,Li, Dandan,Yuan, Chunxiu,Zhang, Xiangqian,Ta, Na,Zhao, Xiaochao,Li, Yumei,Feng, Xingang,Li, Dandan,Li, Yumei,Yuan, Chunxiu. 2017

[3]Molecular cloning of a new wheat calreticulin gene TaCRT1 and expression analysis in plant defense responses and abiotic stress resistance. Lin, R. M.,Wang, F. T.,Feng, J.,Xu, S. C.,An, Y. Q.,Xu, Y. F.. 2011

[4]Polysaccharide from Phellinus linteus induces S-phase arrest in HepG2 cells by decreasing calreticulin expression and activating the P27kip1-cyclin A/D1/E-CDK2 pathway. Li, You-Gui,Ji, Dong-Feng,Zhong, Shi,Liu, Pei-Gang,Lv, Zhi-Qiang,Zhu, Jian-Xun,Chen, Jin-E,Chen, Hua-Ping. 2013

[5]Cloning and characterization of calreticulin and its association with salinity stress in P-trituberculatus. Lv, Jianjian,Wang, Yu,Zhang, Dening,Gao, Baoquan,Liu, Ping,Li, Jian,Wang, Yu,Zhang, Dening.

[6]Inducible expression of calreticulin-N58 in Pichia pastoris by high density cell culture. Su, D. X.,Zhang, A. L.,Liu, Z. W.,Luo, J. X.,Zhang, T. Y.,Luo, J. X.,Zhang, T. Y.,Yi, G. H.,Rao, L. Y.,Zhou, Z. J..

[7]Calreticulin is required for responding to stress, foraging, and fertility in the white-tip nematode, Aphelenchoides besseyi. Feng, Hui,Wei, Lihui,Chen, Huaigu,Zhou, Yijun.

[8]Assortative fertilization in Chlamys farreri and Patinopecten yessoensis and its implication in scallop hybridization. Lu, Zhengming,Yang, Aiguo,Wang, Qingyin,Liu, Zhihong,Zhou, Liqing. 2006

[9]Variations in retention efficiency of bivalves to different concentrations and organic content of suspended particles. Zhang Jihong,Fang Jianguang,Liang Xingming. 2010

[10]Bioinformatics analysis of hemocyte miRNAs of scallop Chlamys farreri against acute viral necrobiotic virus (AVNV). Chen, Guofu,Zhang, Chunyun,Jiang, Fengjuan,Wang, Yuanyuan,Xu, Zhong,Wang, Chongming. 2014

[11]A novel serine protease with clip domain from scallop Chlamys farreri. Zhu, Ling,Song, Linsheng,Zhao, Jiangmin,Li, Chenghua,Xu, Wei,Zhu, Ling,Mao, Yuze. 2008

[12]Comparative transcriptomics reveals genes involved in metabolic and immune pathways in the digestive gland of scallop Chlamys farreri following cadmium exposure. Zhang Hui,Zhai Yuxiu,Yao Lin,Jiang Yanhua,Li Fengling,Zhang Hui,Zhai Yuxiu,Yao Lin,Jiang Yanhua,Li Fengling,Zhang Hui,Zhai Yuxiu,Yao Lin,Jiang Yanhua,Li Fengling. 2017

[13]Discovery of genes associated with cadmium accumulation from gill of scallop Chlamys farreri based on high-throughput sequencing. Zhang, Hui,Zhai, Yuxiu,Yao, Lin,Jiang, Yanhua,Li, Fengling,Zhang, Hui,Zhai, Yuxiu,Yao, Lin,Jiang, Yanhua,Li, Fengling,Zhang, Hui,Zhai, Yuxiu,Yao, Lin,Jiang, Yanhua,Li, Fengling.

[14]Carbon dioxide fixation by the seaweed Gracilaria lemaneiformis in integrated multi-trophic aquaculture with the scallop Chlamys farreri in Sanggou Bay, China. Han, Tingting,Han, Tingting,Han, Tingting,Jiang, Zengjie,Fang, Jianguang,Zhang, Jihong,Mao, Yuze,Zou, Jian,Huang, Yao,Wang, Dongzhe,Huang, Yao,Wang, Dongzhe.

[15]Molecular characterization and immune response expression of the QM gene from the scallop Chlamys farreri. Chen, Guofu,Zhang, Chunyun,Wang, Yue,Wang, Yuanyuan,Guo, Changlu,Wang, Chongming.

[16]Primary culture of Zhikong scallop Chlamys farreri hemocytes as an in vitro model for studying host-pathogen interactions. Ji, Aichang,Li, Xueyu,Fang, Sha,Qin, Zhenkui,Zhang, Zhifeng,Bai, Changming,Wang, Chongming.

[17]The effects of Zhikong scallop (Chlamys farreri) on the microbial food web in a phosphorus-deficient mariculture system in Sanggou Bay, China. Lu, Jiachang,Lu, Jiachang,Huang, Lingfeng,Xiao, Tian,Zhang, Wuchang,Jiang, Zengjie.

[18]Size fraction of phytoplankton and the contribution of natural plankton to the carbon source of Zhikong scallop Chlamys farreri in mariculture ecosystem of the Sanggou Bay. Jiang Zengjie,Du Meirong,Fang Jinghui,Gao Yaping,Li Jiaqi,Fang Jianguang,Jiang Zengjie,Fang Jianguang,Zhao Li. 2017

[19]A preliminary study of differentially expressed genes of the scallop Chlamys farreri against acute viral necrobiotic virus (AVNV). Chen, Guofu,Wang, Chenchao,Zhang, Chunyun,Wang, Yuanyuan,Xu, Zhong,Wang, Chongming. 2013

[20]Emerging and endemic types of Ostreid herpesvirus 1 were detected in bivalves in China. Bai, Changming,Wang, Chongming,Xia, Junyang,Zhang, Shuai,Huang, Jie,Bai, Changming,Wang, Chongming,Huang, Jie,Sun, Hailin.

作者其他论文 更多>>