Autoinhibition of Dishevelled protein regulated by its extreme C terminus plays a distinct role in Wnt/-catenin and Wnt/planar cell polarity (PCP) signaling pathways

文献类型: 外文期刊

第一作者: Qi, Jing

作者: Qi, Jing;Cheng, Xiao-Ning;Shao, Ming;Shi, De-Li;Lee, Ho-Jin;Zheng, Jie J.;Zheng, Jie J.;Zheng, Jie J.;Qi, Jing;Saquet, Audrey;Shi, De-Li

作者机构:

关键词: PDZ domain;signal transduction;structural biology;Wnt pathway;Wnt signaling

期刊名称:JOURNAL OF BIOLOGICAL CHEMISTRY ( 影响因子:5.157; 五年影响因子:5.041 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Dishevelled (Dvl) is a key intracellular signaling molecule that mediates the activation of divergent Wnt pathways. It contains three highly conserved domains known as DIX, PDZ, and DEP, the functions of which have been well characterized in -catenin-dependent canonical and -catenin-independent noncanonical Wnt signaling. The C-terminal region is also highly conserved from invertebrates to vertebrates. However, its function in regulating the activation of different Wnt signals remains unclear. We reported previously that Dvl conformational change triggered by the highly conserved PDZ-binding C terminus is important for the pathway specificity. Here we provide further evidence demonstrating that binding of the C terminus to the PDZ domain results in Dvl autoinhibition in the Wnt signaling pathways. Therefore, the forced binding of the C terminus to the PDZ domain reduces the activity of Dvl in noncanonical Wnt signaling, whereas obstruction of this interaction releases Dvl autoinhibition, impairs its functional interaction with LRP6 in canonical Wnt signaling, and increases its specificity in noncanonical Wnt signaling, which is closely correlated with an enhanced Dvl membrane localization. Our findings highlight the importance of the C terminus in keeping Dvl in an appropriate autoinhibited state, accessible for regulation by other partners to switch pathway specificity. Particularly, the C-terminally tagged Dvl fusion proteins that have been widely used to study the function and cellular localization of Dvl may not truly represent the wild-type Dvl because those proteins cannot be autoinhibited.

分类号: Q5

  • 相关文献

[1]Diet- and Genetically-induced Obesity Produces Alterations in the Microbiome, Inflammation and Wnt Pathway in the Intestine of Apc(+/1638N) Mice: Comparisons and Contrasts. Liu, Wei,Lyu, Lin,Li, Jinchao,Choi, Sang-Woon,Liu, Zhenhua,Liu, Wei,Crott, Jimmy W.,Pfalzer, Anna C.,Mason, Joel B.,Liu, Zhenhua,Choi, Sang-Woon,Yang, Yingke,Mason, Joel B.. 2016

[2]Cloning and Characterization of a CAP Gene Expressed in Gossypium arboreum Fuzzless Mutant. Sheng Wang,Guo-Hong Zhao,Yin-Hua Jia,Xiong-Ming Du.

[3]Isolation and Characterization of an ERF Transcription Factor Gene from Cotton (Gossypium barbadense L.). Xianpeng Meng,Fuguang Li,Chuanliang Liu,Chaojun Zhang,Zhixia Wu,Yajuan Chen.

[4]De Novo Transcriptome Sequencing and the Hypothetical Cold Response Mode of Saussurea involucrata in Extreme Cold Environments. Li, Jin,Liu, Hailiang,Xia, Wenwen,Mu, Jianqiang,Feng, Yujie,Liu, Ruina,Wang, Aiying,Lin, Zhongping,Zhu, Jianbo,Chen, Xianfeng,Liu, Hailiang,Yan, Panyao,Chen, Xianfeng,Lin, Zhongping,Guo, Yong. 2017

[5]Somatic embryogenesis receptor-like kinase 5 in the ecotype Landsberg erecta of Arabidopsis is a functional RD LRR-RLK in regulating brassinosteroid signaling and cell death control. Wu, Wangze,Wu, Yujun,Gao, Yang,Li, Meizhen,Yin, Hongju,Lv, Minghui,Zhao, Jianxin,Li, Jia,He, Kai,Wu, Wangze. 2015

[6]Overexpression of a novel peanut NBS-LRR gene AhRRS5 enhances disease resistance to Ralstonia solanacearum in tobacco. Chen, Hua,Cai, Tiecheng,Deng, Ye,Zhuang, Weijian,Zhang, Chong,Chen, Hua,Cai, Tiecheng,Deng, Ye,Zhuang, Ruirong,Zhang, Ning,Zeng, Yuanhuan,Zheng, Yixiong,Zhuang, Weijian,Zheng, Yixiong,Tang, Ronghua,Pan, Ronglong,Pan, Ronglong. 2017

[7]Research advances on flotillins. Zhao, Feng,Zhang, Jie,Liu, Yong-Sheng,Li, Li,He, Ya-Li. 2011

[8]Phosphoinositide-specific phospholipase C9 is involved in the thermotolerance of Arabidopsis. Zheng, Shu-Zhi,Liu, Yu-Liang,Li, Bing,Shang, Zhong-lin,Sun, Da-Ye,Zhou, Ren-Gang. 2012

[9]Modified AnM technique in combination with black and transparent film mulching in peanut production. Qin, Feifei,Takano, Tetsuo,Qin, Feifei,Xu, Hui-lian,Qin, Feifei. 2012

[10]Gene expression profiling under different photoperiod/temperature conditions in a photoperiod-/thermo-sensitive genic male sterile line of rice (Oryza sativa L.). Guo, XQ,Dong, HT,Zheng, KL,Luo, HM,Tan, XL,Fang, YQ,Wang, YQ,Deng, Y,Dai, CG,Lou, YC,Shao, J,Shi, WQ,Zhao, D,Li, D. 2006

[11]Functions and mechanisms of the CBL-CIPK signaling system in plant response to abiotic stress. Li, Ruifen,Zhang, Junwen,Wei, Jianhua,Wang, Hongzhi,Wang, Yanzhen,Ma, Rongcai,Zhang, Junwen. 2009

[12]Genes involved in ethylene signal transduction in peach (Prunus persica) and their expression profiles during fruit maturation. Wang, Xiaobei,Ding, Yifeng,Wang, Yan,Pan, Lei,Niu, Liang,Lu, Zhenhua,Cui, Guochao,Zeng, Wenfang,Wang, Zhiqiang.

[13]A novel simple extracellular leucine-rich repeat (eLRR) domain protein from rice (OsLRR1) enters the endosomal pathway and interacts with the hypersensitive-induced reaction protein 1 (OsHIR1). Zhou, Liang,Cheung, Ming-Yan,Zhang, Shi-Hong,Sun, Samuel Sai-Ming,Lam, Hon-Ming,Zhou, Liang,Cheung, Ming-Yan,Zhang, Shi-Hong,Sun, Samuel Sai-Ming,Lam, Hon-Ming,Zhang, Qi,Lei, Cai-Lin,Zhang, Shi-Hong.

[14]Calreticulin: conserved protein and diverse functions in plants. Jia, Xiao-Yun,He, Li-Heng,Li, Run-Zhi,Jia, Xiao-Yun,Jing, Rui-Lian.

[15]Morphological characters, inheritance and response to exogenous hormones of a cotton super-dwarf mutant of Gossypium hirsutum. Sun, J. -L.,Jia, Y. -H.,Wang, J.,Du, X. -M.,Zhang, C.,Xu, Z. -J..

[16]Constitutive expression of a rice GTPase-activating protein induces defense responses. Cheung, Ming-Yan,Zeng, Nai-Yan,Tong, Suk-Wah,Li, Wing-Yen Francisca,Sun, Samuel Sai-Ming,Lam, Hon-Ming,Cheung, Ming-Yan,Tong, Suk-Wah,Li, Wing-Yen Francisca,Xue, Yan,Sun, Samuel Sai-Ming,Lam, Hon-Ming,Zhao, Kai-Jun,Wang, Chunlian,Zhang, Qi,Fu, Yaping,Sun, Zongxiu.

[17]Characterization of a common wheat (Triticum aestivum L.) TaSnRK2.7 gene involved in abiotic stress responses. Zhang, Hongying,Mao, Xinguo,Jing, Ruilian,Chang, Xiaoping,Zhang, Hongying,Xie, Huimin.

[18]Arabidopsis thaliana Phosphoinositide-Specific Phospholipase C Isoform 3 (AtPLC3) and AtPLC9 have an Additive Effect on Thermotolerance. Gao, Kang,Liu, Yu-Liang,Li, Bing,Sun, Da-Ye,Zheng, Shu-Zhi,Gao, Kang,Liu, Yu-Liang,Li, Bing,Sun, Da-Ye,Zheng, Shu-Zhi,Gao, Kang,Liu, Yu-Liang,Li, Bing,Sun, Da-Ye,Zheng, Shu-Zhi,Zhou, Ren-Gang.

[19]Signal transduction during wheat grain development. Kong, Lingan,Sun, Mingze,Guo, Honghai.

[20]Differential gene expression and associated QTL mapping for cotton yield based on a cDNA-AFLP transcriptome map in an immortalized F-2. Liu, Renzhong,Wang, Baohua,Guo, Wangzhen,Zhang, Tianzhen,Liu, Renzhong,Wang, Liguo.

作者其他论文 更多>>