Silicon alleviates salt and drought stress of Glycyrrhiza uralensis seedling by altering antioxidant metabolism and osmotic adjustment

文献类型: 外文期刊

第一作者: Zhang, Wenjin

作者: Zhang, Wenjin;Xie, Zhicai;Zhang, Xinhui;Zhang, Xinhui;Wang, Lianhong;Lang, Duoyong;Li, Ming

作者机构:

关键词: Glycyrrhiza uralensis;Silicon;Reactive oxygen species;Antioxidant enzymes;Non-enzyme antioxidants;Osmotic adjustment;Salt and drought stress

期刊名称:JOURNAL OF PLANT RESEARCH ( 影响因子:2.629; 五年影响因子:2.926 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: This study was conducted to determine effect and mechanism of exogenous silicon (Si) on salt and drought tolerance of Glycyrrhiza uralensis seedling by focusing on the pathways of antioxidant defense and osmotic adjustment. Seedling growth, lipid peroxidation, antioxidant metabolism, osmolytes concentration and Si content of G. uralensis seedlings were analyzed under control, salt and drought stress [100 mM NaCl with 0, 10 and 20% of PEG-6000 (Polyethylene glycol-6000)] with or without 1 mM Si. Si addition markedly affected the G. uralensis growth in a combined dose of NaCl and PEG dependent manner. In brief, Si addition improved germination rate, germination index, seedling vitality index and biomass under control and NaCl; Si also increased radicle length under control, NaCl and NaCl-10% PEG, decreased radicle length, seedling vitality index and germination parameters under NaCl-20% PEG. The salt and drought stress-induced-oxidative stress was modulated by Si application. Generally, Si application increased catalase (CAT) activity under control and NaCl-10% PEG, ascorbate peroxidase (APX) activity under all treatments and glutathione (GSH) content under salt combined drought stress as compared with non-Si treatments, which resisted to the increase of superoxide radicals and hydrogen peroxide caused by salt and drought stress and further decreased membrane permeability and malondialdehyde (MDA) concentration. Si application also increased proline concentration under NaCl and NaCl-20% PEG, but decreased it under NaCl-10% PEG, indicating proline play an important role in G. uralensis seedling response to osmotic stress. In conclusion, Si could ameliorate adverse effects of salt and drought stress on G. uralensis likely by reducing oxidative stress and osmotic stress, and the oxidative stress was regulated through enhancing of antioxidants (mainly CAT, APX and GSH) and osmotic stress was regulated by proline.

分类号: Q94

  • 相关文献

[1]Silicon nutrition alleviates the lipid peroxidation and ion imbalance of Glycyrrhiza uralensis seedlings under salt stress. Li, Yue-Tong,Zhang, Wen-Jin,Zhao, Qi-Peng,Zhang, Xin-Hui,Zhao, Qi-Peng,Zhang, Xin-Hui,Cui, Jia-Jia,Lang, Duo-Yong,Li, Ming.

[2]Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity. Song, Alin,Zhang, Jie,Liang, Yongchao,Li, Zhaojun,Xue, Gaofeng,Fan, Fenliang,Liang, Yongchao,Liang, Yongchao.

[3]EFFECT OF DROUGHT STRESS ON LIPID PEROXIDATION AND PROLINE CONTENT IN COTTON ROOTS. Zhang, L.,Peng, J.,Chen, T. T.,Zhao, X. H.,Zhang, S. P.,Liu, S. D.,Dong, H. L.,Feng, L.,Yu, S. X.. 2014

[4]Exogenous Nitric Oxide Pretreatment Enhances Chilling Tolerance of Anthurium. Liang, Lijian,Deng, Yanming,Sun, Xiaobo,Jia, Xinping,Su, Jiale. 2018

[5]rho-Cymene Inhibits Growth and Induces Oxidative Stress in Rice Seedling Plants. Zhang, Fengjuan,Liu, Wanxue,Guo, Jianying,Wan, Fanghao,Zhang, Fengjuan,Chen, Fengxin. 2012

[6]Increasing in ROS levels and callose deposition in peduncle vascular bundles of wheat (Triticum aestivum L.) grown under nitrogen deficiency. Kong, Lingan,Wang, Fahong,Si, Jisheng,Feng, Bo,Zhang, Bin,Li, Shengdong,Wang, Zheng,Wang, Fahong. 2013

[7]Overexpression of a new Cys(2)/His(2) zinc finger protein ZmZF1 from maize confers salt and drought tolerance in transgenic Arabidopsis. Huai, Junling,Zheng, Jun,Wang, Guoying,Huai, Junling. 2009

[8]Effects of manganese deficiency on growth and contents of active constituents of Glycyrrhiza uralensis Fisch.. Wang, Wen-Quan,Wang, Wen-Quan,Wang, Dan,Wang, Dan,Wan, Chun-Yang,Wang, Wen-Quan,Hou, Jun-Ling,Li, Wei-Dong,Wei, Sheng-Li,Yu, Jing-Bo,Wan, Chun-Yang,Wang, Wen-Quan,Hou, Jun-Ling,Li, Wei-Dong,Wei, Sheng-Li.

[9]Applications of xerophytophysiology in plant production - Sorghum plants improved by exposing the mesocotyl as stimulus. Xu, Hui-lian,Xu, Rongyan,Qin, Feifei,Qin, Feifei,Wang, Fahong,Li, Fengmin. 2009

[10]Modified AnM technique in combination with black and transparent film mulching in peanut production. Qin, Feifei,Takano, Tetsuo,Qin, Feifei,Xu, Hui-lian,Qin, Feifei. 2012

[11]Applications of xerophytophysiology in plant production - peanut cultivation with the AnM method. Xu, Hui-lian,Xu, Rongyan,Qin, Feifei,Morita, Shigenori,Wang, Jingshan,Wang, Minglun,Qin, Feifei. 2009

[12]Applications of xerophytophysiology in plant production-LED blue light as a stimulus improved the tomato crop. Xu, Hui-lian,Xu, Qicong,Qin, Feifei,Li, Fenglan,Feng, Yanzhong,Qin, Feifei,Fang, Wei. 2012

[13]Application of xerophytophysiology in plant production - Growing wheat on ridged bed. Qin, Feifei,Xu, Qicong,Qin, Feifei,Du, Fangling,Li, Fengmin.

[14]Genetic diversity and phenotypic variation for drought resistance in alfalfa (Medicago sativa L.) germplasm collected for drought tolerance. Zhang, Tiejun,Kesoju, Sandya,Hu, Jinguo,Yu, Long-Xi,Zhang, Tiejun,Kesoju, Sandya,Greene, Stephanie L.,Fransen, Steven. 2018

[15]Morphological and Physiological Responses of Sugar Beet to Alkaline Stress. Zou, Chunlei,Sang, Limin,Wang, Yubong,Li, Caifeng,Gai, Zhijia. 2018

[16]Arbuscular mycorrhizal influence on growth, photosynthetic pigments, osmotic adjustment and oxidative stress in tomato plants subjected to low temperature stress. Latef, Arafat Abdel Hamed Abdel,He Chaoxing.

[17]Improvement of heat and drought photosynthetic tolerance in wheat by overaccumulation of glycinebetaine. Wang, Gui-Ping,Hui, Zhen,Li, Feng,Zhao, Mei-Rong,Zhang, Jin,Wang, Wei,Wang, Gui-Ping.

[18]Applications of xerophytophysiology in plant production - Partial root drying improves tomato crops. Qin, F. F.,Xu, Q. C.,Shah, R. P.,Qin, F. F.,Wang, R.,Zhao, A. H.,Li, F. M..

[19]Application of silicon fertilizer affects nutritional quality of rice. Liu, Qihua,Zhou, Xuebiao,Sun, Zhaowen. 2017

[20]Importance of plant species and external silicon concentration to active silicon uptake and transport. Liang, Yongchao,Hua, Haixia,Zhu, Yong-Guan,Zhang, Jie,Cheng, Chunmei,Roemheld, Volker. 2006

作者其他论文 更多>>