Isolation, cloning, and expression of five genes related to nitrogen metabolism in peach (Prunus persica L. Batsch)

文献类型: 外文期刊

第一作者: Zhang, C. H.

作者: Zhang, C. H.;Zhang, B. B.;Yu, M. L.;Ma, R. J.;Song, Z. Z.;Korir, N. K.

作者机构:

关键词: Peach;Prunus persica;nitrogen metabolism;urea;gene expression

期刊名称:JOURNAL OF HORTICULTURAL SCIENCE & BIOTECHNOLOGY ( 影响因子:1.641; 五年影响因子:1.616 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: An optimal dosage of nitrogen has long been known to play important roles in governing nitrogen-use efficiency and improving the yield of plants. However, there is limited information on the isolation and expression profiles of genes related to nitrogen metabolism in peach (Prunus persica L. Batsch). This study isolated five genes involved in nitrogen metabolism and evaluated the effects of a single foliar application of urea on levels of expression of these genes in the leaves of 'Dazhenbaochiyue' peach. Cloning resulted in the isolation of 1,767, 1,236, 1,074, 1,758, and 2,721 nt-long cDNAs with full-length open reading frames encoding 588, 411, 357, 585, and 906 amino acids representing the asparagine synthetase (AS), glutamate dehydrogenase (GDH), glutamine synthetase (GS), nitrite reductase (NiR), and nitrate reductase (NR) genes in peach, respectively. An alignment of multiple amino acid sequences revealed that the AS, GDH, GS, and NR proteins in peach shared high levels of sequence conservation or identity at the amino acid level with their homologues in Arabidopsis thaliana and grapevine (Vitis vinifera). Based on analyses of expression of the five genes in peach leaves, we demonstrated that genes related to nitrogen metabolism responded to a foliar application of urea within 2 d. This was consistent with previous reports which indicated that leaves rapidly absorbed urea-nitrogen after foliar application. Foliar application of 0.5% (w/v) urea inhibited expression of GS and NiR, but increased expression of GDH, AS, and NR compared to control leaves. The different patterns of expression of the five genes in this study suggested that their expression might reflect their various roles in nitrogen metabolism, plant N status, and responses to weather conditions such as high light intensity, temperature, or humidity, all of which affect photosynthesis. These findings provide a basis for future functional analyses of these five genes in peach.

分类号: S6

  • 相关文献

[1]Molecular characterization of the PpMADS1 gene from peach. Li, Cui,Zhang, Lin,Li, Yun-Fu,Ma, Rong-Cai,Li, Cui,Xie, Hua,Xu, Yong,Li, Yun-Fu,Ma, Rong-Cai,Li, Cui. 2012

[2]Effects of the fungal endophyte Phomopsis liquidambari on nitrogen uptake and metabolism in rice. Yang, Bo,Wang, Xiao-Mi,Ma, Hai-Yan,Jia, Yong,Dai, Chuan-Chao,Li, Xia.

[3]Effects of root restriction on nitrogen and gene expression levels in nitrogen metabolism in Jumeigui grapevines (Vitis vinifera L.xVitis labrusca L). Li Jie-fa,Wang Bo,Wang Lei,Zhang Cai-xi,Xu Wen-ping,Wang Shi-ping,Zhu Li-na,Bai Yang. 2015

[4]Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L.). Wang, Huan,Shi, Decheng,Liu, Bao,Yang, Chunwu,Zhang, Meishan,Guo, Rui,Lin, Xiuyun. 2012

[5]Transcription of potassium transporter genes of KT/HAK/KUP family in peach seedlings and responses to abiotic stresses. Song, Z. -Z.,Yang, Y.,Ma, R. -J.,Xu, J. -L.,Yu, M. -L.,Song, Z. -Z.,Yang, Y.,Ma, R. -J.,Xu, J. -L.,Yu, M. -L.,Song, Z. -Z..

[6]Cloning and expression of genes related to the sucrose-metabolizing enzymes and carbohydrate changes in peach. Zhang, Chunhua,Shen, Zhijun,Ma, Ruijuan,Yu, Mingliang,Zhang, Yanping,Han, Jian,Korir, Nicholas Kibet.

[7]Isolation and expression analysis of four HD-ZIP III family genes targeted by microRNA166 in peach. Zhang, C. H.,Zhang, B. B.,Ma, R. J.,Yu, M. L.,Guo, S. L.,Guo, L.. 2015

[8]Transcriptome analysis reveals novel genes involved in anthocyanin biosynthesis in the flesh of peach. Cao, Ke,Ding, Tiyu,Mao, Dongmin,Zhu, Gengrui,Fang, Weichao,Chen, Changwen,Wang, Xinwei,Wang, Lirong. 2018

[9]Accumulation of carotenoids and expression of carotenogenic genes in peach fruit. Cao, Shifeng,Liang, Minhua,Shi, Liyu,Shao, Jiarong,Song, Chunbo,Bian, Kun,Chen, Wei,Yang, Zhenfeng. 2017

[10]Planting density and leaf-square regulation affected square size and number contributing to altered insecticidal protein content in Bt cotton. Yuan Chen,Chen, Dehua,Yabing Li,Yuan Chen,Eltayib H.M.A. Abidallha,Dapeng Hu,Yuan Li,Xiang Zhang,Dehua Chen.

[11]Nitrogen (N) Application Gradually Enhances Boll Development and Decreases Boll Shell Insecticidal Protein Content in N-Deficient Cotton. Yuan Chen,Chen, Dehua,Yabing Li,Mingyuan Zhou,Qiuzhi Rui,Zezhou Cai,Xiang Zhang,Yuan Chen,Dehua Chen. 2018

[12]Rearrangement of nitrogen metabolism in rice (Oryza sativa L.) under salt stress. Xu, Jianwen,Huang, Xi,Lan, Hongxia,Zhang, Hongsheng,Huang, Ji,Xu, Jianwen.

[13]Effects of 5-aminolevulinic acid on nitrogen metabolism and ion distribution of watermelon seedlings under salt stress. Chen, G.,Fan, P. S.,Feng, W. M.,Guan, A. Q.,Lu, Y. Y.,Wan, Y. L..

[14]Arabidopsis plastidial folylpolyglutamate synthetase is required for nitrogen metabolism under nitrate-limited condition in darkness. Meng, Hongyan,Xu, Bosi,Zhang, Chunyi,Jiang, Ling,Zhang, Chunyi,Jiang, Ling.

[15]ES7, encoding a ferredoxin-dependent glutamate synthase, functions in nitrogen metabolism and impacts leaf senescence in rice. Bi, Zhenzhen,Zhang, Yingxin,Wu, Weixun,Zhan, Xiaodeng,Yu, Ning,Xu, Tingting,Liu, Qunen,Li, Zhi,Shen, Xihong,Chen, Daibo,Cheng, Shihua,Cao, Liyong,Bi, Zhenzhen,Zhang, Yingxin,Wu, Weixun,Zhan, Xiaodeng,Yu, Ning,Xu, Tingting,Liu, Qunen,Li, Zhi,Shen, Xihong,Chen, Daibo,Cheng, Shihua,Cao, Liyong.

[16]Improvement of nitrogen accumulation and metabolism in rice (Oryza sativa L.) by the endophyte Phomopsis liquidambari. Yang, Bo,Ma, Hai-Yan,Wang, Xiao-Mi,Jia, Yong,Hu, Jing,Dai, Chuan-Chao,Li, Xia.

[17]Growth performance and nitrogen metabolism in weaned pigs fed diets containing different sources of starch. Li, T. J.,Huang, R. L.,Wu, G. Y.,Lin, Y. C.,Jiang, Z. Y.,Kong, X. F.,Chu, W. Y.,Zhang, Y. M.,Kang, P.,Hou, Z. P.,Fan, M. Z.,Liao, Y. P.,Yin, Y. L.. 2007

[18]Calcium involved in the poly(gamma-glutamic acid)-mediated promotion of Chinese cabbage nitrogen metabolism. Xu, Zongqi,Lei, Peng,Feng, Xiaohai,Liang, Jinfeng,Chi, Bo,Xu, Hong,Xu, Zongqi,Lei, Peng,Feng, Xiaohai,Liang, Jinfeng,Chi, Bo,Xu, Hong,Xu, Xianju,Feng, Xiaohai,Liang, Jinfeng,Chi, Bo,Xu, Hong. 2014

[19]Integrated Transcriptome and Metabolic Analyses Reveals Novel Insights into Free Amino Acid Metabolism in Huangjinya Tea Cultiva. Zhang, Qunfeng,Liu, Meiya,Ruan, Jianyun,Zhang, Qunfeng,Liu, Meiya,Ruan, Jianyun. 2017

[20]Vegetative storage proteins in the tropical tree Swietenia macrophylia: seasonal fluctuation in relation to a fundamental role in the regulation of tree growth. Tian, WM,Wu, JL,Hao, BZ,Hu, ZH. 2003

作者其他论文 更多>>