SPL33, encoding an eEF1A-like protein, negatively regulates cell death and defense responses in rice

文献类型: 外文期刊

第一作者: Wang, Shuai

作者: Wang, Shuai;Lei, Cailin;Wang, Jiulin;Ma, Jian;Tang, Sha;Wang, Chunlian;Zhao, Kaijun;Tian, Peng;Qi, Changyan;Cheng, Zhijun;Zhang, Xin;Guo, Xiuping;Wu, Chuanyin;Wan, Jianmin;Zhang, Huan;Liu, Linglong;Wan, Jianmin

作者机构:

关键词: Defense responses;eukaryotic translation elongation factor 1 alpha (eEF1A);lesion-mimic mutant;Oryza sativa;programed cell death;SPL33

期刊名称:JOURNAL OF EXPERIMENTAL BOTANY ( 影响因子:6.992; 五年影响因子:7.86 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Lesion-mimic mutants are useful to dissect programmed cell death and defense-related pathways in plants. Here we identified a new rice lesion-mimic mutant, spotted leaf 33 (spl33) and cloned the causal gene by a map-based cloning strategy. SPL33 encodes a eukaryotic translation elongation factor 1 alpha (eEF1A)-like protein consisting of a nonfunctional zinc finger domain and three functional EF-Tu domains. spl33 exhibited programmed cell death-mediated cell death and early leaf senescence, as evidenced by analyses of four histochemical markers, namely H2O2 accumulation, cell death, callose accumulation and TUNEL-positive nuclei, and by four indicators, namely loss of chlorophyll, breakdown of chloroplasts, down-regulation of photosynthesis-related genes, and up-regulation of senescence-associated genes. Defense responses were induced in the spl33 mutant, as shown by enhanced resistance to both the fungal pathogen Magnaporthe oryzae and the bacterial pathogen Xanthomonas oryzae pv. oryzae and by up-regulation of defense response genes. Transcriptome analysis of the spl33 mutant and its wild type provided further evidence for the biological effects of loss of SPL33 function in cell death, leaf senescence and defense responses in rice. Detailed analyses showed that reactive oxygen species accumulation may be the cause of cell death in the spl33 mutant, whereas uncontrolled activation of multiple innate immunity-related receptor genes and signaling molecules may be responsible for the enhanced disease resistance observed in spl33. Thus, we have demonstrated involvement of an eEF1A-like protein in programmed cell death and provided a link to defense responses in rice.

分类号: Q94

  • 相关文献

[1]Disruption of OsSEC3A increases the content of salicylic acid and induces plant defense responses in rice. Ma, Jin,Sodmergen,Chen, Jun,Wang, Min,Ren, Yulong,Wang, Shuai,Lei, Cailin,Cheng, Zhijun. 2018

[2]Saccharina genomes provide novel insight into kelp biology. Ye, Naihao,Zhang, Xiaowen,Fan, Xiao,Xu, Dong,Wang, Dongsheng,Wang, Yitao,Guan, Zheng,Shao, Changwei,Zhuang, Zhimeng,Miao, Miao,Zheng, Yi,Wang, Jinfeng,Zhou, Lin,Gao, Yuan,Shi, Wenyu,Ji, Peifeng,Zhao, Fangqing,Miao, Miao,Zheng, Yi,Zhou, Lin,Gao, Yuan,Shi, Wenyu,Ji, Peifeng,Li, Demao,Gao, Zhengquan,Qi, Ji,Qi, Ji.

[3]Expression analysis of major genes involved in signaling pathways during infection of Chinese cabbage with Hyaloperonospora brassicae. Gao, Tingting,Yu, Shuancang,Zhang, Fenglan,Yu, Yangjun,Zhang, Deshuang,Zhao, Xiuyun,Wang, Weihong,Gao, Tingting,Chen, Xuehao. 2014

[4]Expression of the ethylene response factor gene TSRF1 enhances abscisic acid responses during seedling development in tobacco. Zhang, Hongbo,Zhang, Zhijin,Huang, Rongfeng,Zhang, Hongbo,Chen, Jia,Wang, Xue-Chen,Yang, Yuhong,Zhang, Hongbo,Zhang, Zhijin,Huang, Rongfeng.

[5]Watery Saliva Secreted by the Grain Aphid Sitobion avenae Stimulates Aphid Resistance in Wheat. Zhang, Yong,Fan, Jia,Chen, Julian,Zhang, Yong,Francis, Frederic. 2017

[6]Pectinase production by Aspergillus niger using wastewater in solid state fermentation for eliciting plant disease resistance. Bai, ZH,Zhang, HX,Qi, HY,Peng, XW,Li, BJ.

[7]Malus hupehensis miR168 Targets to ARGONAUTE1 and Contributes to the Resistance against Botryosphaeria dothidea Infection by Altering Defense Responses. Yu, Xinyi,Hou, Yingjun,Wang, Sanhong,Wang, Peihong,Qu, Shenchun,Yu, Xinyi,Chen, Weiping. 2017

[8]Isolation and identification of a gene in response to rice blast disease in rice. Zheng, XW,Chen, XW,Zhang, XH,Lin, ZZ,Shang, JJ,Xu, JC,Zhai, WX,Zhu, LH.

[9]Association of decreased expression of a Myb transcription factor with the TPD (tapping panel dryness) syndrome in Hevea brasiliensis. Chen, SC,Peng, SQ,Huang, GX,Wu, KX,Fu, XH,Chen, ZQ.

[10]Effects of elevated air temperature on physiological characteristics of flag leaves and grain yield in rice. Liu, Qi-Hua,Wu, Xiu,Ma, Jia-Qing,Zhou, Xue-Biao,Li, Tian. 2013

[11]Detection of epistatic interactions of three QTLs for heading date in rice using single segment substitution lines. Ding, Han-Feng,Liu, Xu,Li, Run-Fang,Wang, Wen-Ying,Zhang, Y.,Zhang, Xiao-Dong,Yao, Fang-Yin,Li, Guang-Xian,Jiang, Ming-Song,Ding, Han-Feng.

[12]Virus resistance obtained in transgenic tobacco and rice by RNA interference using promoters with distinct activity. Zhang, C.,Song, Y.,Jiang, F.,Jiang, Y.,Zhu, C.,Wen, F.,Li, G..

[13]Application of silicon fertilizer affects nutritional quality of rice. Liu, Qihua,Zhou, Xuebiao,Sun, Zhaowen. 2017

[14]Frequency distribution of sensitivity of Ustilaginoidea virens to four EBI fungicides, prochloraz, difenoconazole, propiconazole and tebuconazole, and their efficacy in controlling rice false smut in Anhui Province of China. Chen, Yu,Zhang, Yong,Yang, Xue,Wang, Wen-Xiang,Zhang, Ai-Fang,Gao, Tong-Chun,Chen, Yu,Zhang, Yong,Yang, Xue,Wang, Wen-Xiang,Zhang, Ai-Fang,Gao, Tong-Chun,Yao, Jian,Li, Yun-Fei,Chen, Yu,Zhang, Yong,Yang, Xue,Wang, Wen-Xiang,Zhang, Ai-Fang,Gao, Tong-Chun. 2013

[15]Cultivar group of rice cultivated in Caoxieshan site (B.P.6000 similar to present) determined by the morphology of plant opals and its historical change. Wang, CL,Udatsu, T,Tang, LH,Zhou, JS,Zheng, YF,Sasaki, A,Yanagisawa, K,Fujiwara, H. 1998

[16]A Young Seedling Stripe2 phenotype in rice is caused by mutation of a chloroplast-localized nucleoside diphosphate kinase 2 required for chloroplast biogenesis. Zhou, Kunneng,Xia, Jiafa,Wang, Yuanlei,Ma, Tingchen,Li, Zefu. 2017

[17]Characterization and identification of cold tolerant near-isogenic lines in rice. Zhou, Lei,Hu, Guanglong,Pan, Yinghua,Zhang, Hongliang,Li, Jinjie,Li, Zichao,Zhou, Lei,Hu, Guanglong,Pan, Yinghua,Zhang, Hongliang,Li, Jinjie,Li, Zichao,Zeng, Yawen,Yang, Shuming,Zhou, Lei,You, Aiqing,Hu, Guanglong. 2012

[18]Molecular mapping of a pollen killer gene S29(t) in Oryza Glaberrima and co-linear analysis with S22 in O-Glumaepatula. Hu, Fengyi,Xu, Peng,Deng, Xianneng,Zhou, Jiawu,Li, Jing,Tao, Dayun. 2006

[19]Involvement of Polyamine Oxidase-Produced Hydrogen Peroxide during Coleorhiza-Limited Germination of Rice Seeds. Chen, Bing-Xian,Li, Wen-Yan,Gao, Yin-Tao,Chen, Zhong-Jian,Zhang, Wei-Na,Liu, Qin-Jian,Chen, Zhuang,Liu, Jun. 2016

[20]Reactive Oxygen Species Generated by NADPH Oxidases Promote Radicle Protrusion and Root Elongation during Rice Seed Germination. Li, Wen-Yan,Chen, Bing-Xian,Chen, Zhong-Jian,Gao, Yin-Tao,Chen, Zhuang,Liu, Jun. 2017

作者其他论文 更多>>