Comparative analysis of the liver transcriptome of Pelteobagrus vachellii with an alternative feeding time

文献类型: 外文期刊

第一作者: Wen, Zhengyong

作者: Wen, Zhengyong;Zou, Yuanchao;Yuan, Dengyue;Shao, Ting;Li, Huatao;Gong, Quan

作者机构:

关键词: Pelteobagrus vachellii;Transcriptome sequencing;Metabolic alterations;Circadian rhythms;Alternative feeding time

期刊名称:COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS ( 影响因子:2.674; 五年影响因子:2.941 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Pelteobagrus vachellii, an important freshwater fish in China, shows predominantly nocturnal behavior. To better understand the growth and molecular mechanisms underlying altered feeding times in this species, we studied the growth and liver transcriptome of P. vachellii with shifted feeding times. In this study, a 9-week growth trial was conducted on male P. vachellii (mean weight +/- S.E. = 1.05 +/- 0.36 g) with commercial feed. Two triplicate groups of fish were fed either at 0800 (day group, control) or at 2000 (night group) with the same amount of feed. After nine weeks, a significant increase in growth was observed in the night group, demonstrated by the specific growth rate (SGR). Using high-throughput RNA-seq, 70,793,844 and 67,930,610 paired-end clean reads were obtained from six cDNA libraries of P. vachellii liver, and 60,069 unigenes were assembled. Gene expression comparison revealed that 122 genes were significantly up-regulated and 59 genes were significantly down-regulated in the night group. Gene pathway and GO enrichment analyses revealed metabolic responses of genes and gene networks related to protein, lipid and carbohydrate metabolism and rhythms. This study indicates that an alternative feeding time can improve growth and create metabolic alterations in the liver of P. vachellii.

分类号: Q75

  • 相关文献

[1]Transcriptome analysis of the spleen of the darkbarbel catfish Pelteobagrus vachellii in response to Aeromonas hydrophila infection. Wen, Zhengyong,Yuan, Dengyue,Shao, Ting,Wang, Jun,Li, Huatao,Gong, Quan. 2017

[2]Influences of dietary lipid and temperature on growth, fat deposition and lipoprotein lipase expression in darkbarbel catfish (Pelteobagrus vachellii). Qiang, Jun,He, Jie,Li, Hong-Xia,Xu, Pao,Sun, Yi-Lan,Qiang, Jun,Tao, Yi-Fan,Bao, Jin-Wen,Shi, Wen-bo,Xu, Pao. 2017

[3]Comparative analysis of pre- and post-parasitic transcriptomes and mining pioneer effectors of Heterodera avenae. Yang, Dan,Chen, Changlong,Liu, Qian,Jian, Heng,Chen, Changlong. 2017

[4]Genome-Wide Association and Transcriptome Analyses Reveal Candidate Genes Underlying Yield-determining Traits in Brassica napus. Lu, Kun,Peng, Liu,Zhang, Chao,Lu, Junhua,Yang, Bo,Xiao, Zhongchun,Liang, Ying,Xu, Xingfu,Qu, Cunmin,Zhang, Kai,Liu, Liezhao,Li, Jiana,Peng, Liu,Zhang, Chao,Zhu, Qinlong,Fu, Minglian,Yuan, Xiaoyan. 2017

[5]High-throughput sequencing of highbush blueberry transcriptome and analysis of basic helix-loop-helix transcription factors. Song Yang,Liu Hong-di,Zhang Hong-jun,Wang Hai-bo,Liu Feng-zhi,Zhou Qiang,Zhang Zhi-dong,Li Ya-dong. 2017

[6]Comparative transcriptome analysis of soybean response to bean pyralid larvae. Sun, Zudong,Cai, Zhaoyan,Chen, Huaizhu,Lai, Zhenguang,Yang, Shouzhen,Tang, Xiangmin. 2017

[7]Comparative transcriptome analysis of Ziziphus jujuba infected by jujube witches' broom phytoplasmas. Fan, Xin-Ping,Liu, Wei,Qiao, Yong-Sheng,Shang, Yong-Jin,Wang, Guo-Ping,Tian, Xin,Fan, Xin-Ping,Liu, Wei,Shang, Yong-Jin,Wang, Guo-Ping,Han, Yuan-Huai,Bertaccini, Assunta. 2017

[8]Comparative transcriptome profiling of a rice line carrying Xa39 and its parents triggered by Xanthomonas oryzae pv. oryzae provides novel insights into the broad-spectrum hypersensitive response. Zhang, Fan,Huang, Li-Yu,Zhang, Fan,Zhuo, Da-Long,Li, Zhi-kang,Zhou, Yong-Li,Huang, Li-Yu,Ali, Jauhar,Cruz, Casiana Vera,Du, Zheng-Lin. 2015

[9]Transcriptome Analysis and Discovery of Genes Involved in Immune Pathways from Coelomocytes of Sea Cucumber (Apostichopus japonicus) after Vibrio splendidus Challenge. Gao, Qiong,Gao, Qiong,Liao, Meijie,Wang, Yingeng,Li, Bin,Zhang, Zheng,Rong, Xiaojun,Chen, Guiping,Wang, Lan. 2015

[10]Gonadal transcriptomic analysis of yellow catfish (Pelteobagrus fulvidraco): identification of sex-related genes and genetic markers. Lu, Jianguo,Luan, Peixian,Zhang, Xiaofeng,Xue, Shuqun,Peng, Lina,Sun, Xiaowen,Lu, Jianguo,Lu, Jianguo,Luan, Peixian,Zhang, Xiaofeng,Xue, Shuqun,Sun, Xiaowen,Peng, Lina,Mahbooband, Shahid.

[11]Transcriptome Sequencing Analyses between the Cytoplasmic Male Sterile Line and Its Maintainer Line in Welsh Onion (Allium fistulosum L.). Liu, Qianchun,Wen, Changlong,Zhao, Hong,Wang, Jian,Wang, Yongqin,Lan, Yanping. 2016

[12]Transcriptome analysis of nitrogen-starvation-responsive genes in rice. Yang, Wenzhu,Yoon, Jinmi,Choi, Heebak,An, Gynheung,Yang, Wenzhu,Yoon, Jinmi,Choi, Heebak,An, Gynheung,Yang, Wenzhu,Fan, Yunliu,Chen, Rumei,Yang, Wenzhu,Fan, Yunliu,Chen, Rumei. 2015

[13]Embryonal Control of Yellow Seed Coat Locus ECY1 Is Related to Alanine and Phenylalanine Metabolism in the Seed Embryo of Brassica napus. Wang, Fulin,Shi, Jianghua,Zheng, Tao,Wu, Guanting,Liu, Renhu,He, Jiewang,Xu, Fei,Liu, Renhu,Liu, Shengyi. 2016

[14]ThPP1 gene, encodes an inorganic pyrophosphatase in Thellungiella halophila, enhanced the tolerance of the transgenic rice to alkali stress. He, Rui,Han, Xiaori,He, Rui,Yu, Guohong,Han, Jiao,Li, Wei,Wang, Bing,Huang, Shengcai,Cheng, Xianguo,Han, Jiao.

[15]PeanutDB: an integrated bioinformatics web portal for Arachis hypogaea transcriptomics. Shu, Changlong,Zhang, Jie,Schmidt, Emily,Li, Pei,Lenox, Douglas,Liu, Lin,Liang, Chun,Schmidt, Emily,Lenox, Douglas,Liang, Chun. 2012

[16]Gene Expression Variations of Red-White Skin Coloration in Common Carp (Cyprinus carpio). Li, Xiao-Min,Song, Ying-Nan,Xiao, Gui-Bao,Zhu, Bai-Han,Xu, Gui-Cai,Sun, Ming-Yuan,Xiao, Jun,Sun, Xiao-Wen,Li, Jiong-Tang,Li, Xiao-Min,Song, Ying-Nan,Xiao, Gui-Bao,Zhu, Bai-Han,Xu, Gui-Cai,Sun, Ming-Yuan,Xiao, Jun,Sun, Xiao-Wen,Li, Jiong-Tang,Song, Ying-Nan,Zhu, Bai-Han,Sun, Ming-Yuan,Xiao, Jun,Mahboob, Shahid,Al-Ghanim, Khalid A.. 2015

[17]Analysis on differentially expressed genes in watermelon rind color based on RNA-Seq. Wu Cai-jun,Yang Kan-kan,Liang Zhi-huai. 2016

[18]Transcriptome analysis revealed the drought-responsive genes in Tibetan hulless barley. Zeng, Xingquan,Wei, Zexiu,Yuan, Hongjun,Wang, Yulin,Xu, Qijun,Tang, Yawei,Nyima, Tashi,Yuan, Hongjun,Wang, Yulin,Xu, Qijun,Tang, Yawei,Nyima, Tashi,Bai, Lijun. 2016

[19]De novo assembly of the transcriptome of Neottopteris nidus using Illumina paired-end sequencing and development of EST-SSR markers. Jia, Xinping,Deng, Yanming,Sun, Xiaobo,Liang, Lijian,Su, Jiale.

[20]Differential gene expression in banana roots in response to Fusarium wilt. Wang, Yuguang,Xia, Qiyu,Lu, Xuehua,Sun, Jianbo,Wang, Guihua,Zhang, He,Zhang, Xin.

作者其他论文 更多>>