Differential gene expression in banana roots in response to Fusarium wilt

文献类型: 外文期刊

第一作者: Wang, Yuguang

作者: Wang, Yuguang;Xia, Qiyu;Lu, Xuehua;Sun, Jianbo;Wang, Guihua;Zhang, He;Zhang, Xin

作者机构:

关键词: banana;differentially expressed genes;flower bud differentiation period;Fusarium oxysporum f. sp cubense;transcriptome sequencing

期刊名称:CANADIAN JOURNAL OF PLANT PATHOLOGY ( 影响因子:2.442; 五年影响因子:1.993 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Banana wilt disease, caused by Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4), is a devastating disease in the banana industry. The molecular mechanism underlying the wilt resistance of AAA-type banana cultivars has not been fully characterized. Our objective was to analyse the genes differentially expressed in roots during the time of flower bud differentiation in plants grown in fields infested with Foc TR4. We compared the Foc TR4-tolerant Formosana' banana and the susceptible Brazil' banana. cDNA libraries were constructed from RNA isolated from the roots of both cultivars, and generated approximately 40 million and 35 million high-quality reads, respectively. We mapped 28353810 Formosana' reads and 26917421 Brazil' reads to the banana genome. A search of the NR (non-redundant) database resulted in the annotation of 34408 genes. Additionally, 107 genes were differentially expressed between the two cultivars. Among the 48 differentially expressed genes with known functions, 41 were expressed more highly in Formosana' than in Brazil'. These genes were divided into several categories, including specific resistance mechanism-related enzyme genes and phytoalexin synthesis-related genes. The expression levels of eight genes were validated by a quantitative real-time polymerase chain reaction. Our results indicate that Formosana' may enhance its tolerance to Foc TR4 by increasing the expression of defence-related genes (possibly constitutively). This cultivar also exhibits up-regulated expression of non-specific stress-related genes, which may enhance its overall disease tolerance. This study provides important transcript-level details potentially useful for clarifying the molecular mechanism underlying the disease resistance of Cavendish banana cultivars.

分类号: S4`S43`Q945.8

  • 相关文献

[1]Transcriptome profiling of resistant and susceptible Cavendish banana roots following inoculation with Fusarium oxysporum f. sp cubense tropical race 4. Li, Chun-yu,Jin, Yan,Kuang, Rui-bin,Yang, Qiao-song,Sheng, Ou,Wei, Yue-rong,Hu, Chun-hua,Dong, Tao,Yi, Gan-jun,Li, Chun-yu,Jin, Yan,Kuang, Rui-bin,Yang, Qiao-song,Sheng, Ou,Wei, Yue-rong,Hu, Chun-hua,Dong, Tao,Yi, Gan-jun,Deng, Gui-ming,Yang, Jing,Zuo, Cun-wu,Lv, Zhi-cheng,Viljoen, Altus. 2012

[2]Diversity and chemotaxis of soil bacteria with antifungal activity against Fusarium wilt of banana. Li, Ping,Ma, Li,Feng, Yun Li,Mo, Ming He,Li, Ping,Ma, Li,Feng, Yun Li,Mo, Ming He,Yang, Fa Xiang,Dai, Hao Fu,Zhao, You Xing. 2012

[3]Transcriptome Analysis and Discovery of Genes Involved in Immune Pathways from Coelomocytes of Sea Cucumber (Apostichopus japonicus) after Vibrio splendidus Challenge. Gao, Qiong,Gao, Qiong,Liao, Meijie,Wang, Yingeng,Li, Bin,Zhang, Zheng,Rong, Xiaojun,Chen, Guiping,Wang, Lan. 2015

[4]Analysis on differentially expressed genes in watermelon rind color based on RNA-Seq. Wu Cai-jun,Yang Kan-kan,Liang Zhi-huai. 2016

[5]Functional characterization of the gene FoOCH1 encoding a putative alpha-1,6-mannosyltransferase in Fusarium oxysporum f. sp cubense. Li, Min-Hui,Xie, Xiao-Ling,Lin, Xian-Feng,Shi, Jin-Xiu,Ding, Zhao-Jian,Ling, Jin-Feng,Xi, Ping-Gen,Zhou, Jia-Nuan,Jiang, Zi-De,Leng, Yueqiang,Zhong, Shaobin,Ling, Jin-Feng. 2014

[6]The G-protein subunits FGA2 and FGB1 play distinct roles in development and pathogenicity in the banana fungal pathogen Fusarium oxysporum f. sp cubense. Guo, Lijia,Yang, Laying,Liang, Changcong,Wang, Jun,Liu, Lei,Huang, Junsheng,Guo, Lijia,Yang, Laying,Liang, Changcong,Wang, Jun,Liu, Lei,Huang, Junsheng.

[7]Functional analysis of the G-protein alpha subunits FGA1 and FGA3 in the banana pathogen Fusarium oxysporum f. sp cubense. Guo, Lijia,Yang, Yuhua,Yang, Laying,Wang, Feiyang,Wang, Guofen,Huang, Junsheng,Guo, Lijia,Yang, Yuhua,Yang, Laying,Wang, Feiyang,Wang, Guofen,Huang, Junsheng.

[8]Isolation and characterization of antagonistic bacteria against fusarium wilt and induction of defense related enzymes in banana. Sun, J. B.,Peng, M.,Wang, Y. G.,Zhao, P. J.,Xia, Q. Y.. 2011

[9]Comparative analysis of pre- and post-parasitic transcriptomes and mining pioneer effectors of Heterodera avenae. Yang, Dan,Chen, Changlong,Liu, Qian,Jian, Heng,Chen, Changlong. 2017

[10]Genome-Wide Association and Transcriptome Analyses Reveal Candidate Genes Underlying Yield-determining Traits in Brassica napus. Lu, Kun,Peng, Liu,Zhang, Chao,Lu, Junhua,Yang, Bo,Xiao, Zhongchun,Liang, Ying,Xu, Xingfu,Qu, Cunmin,Zhang, Kai,Liu, Liezhao,Li, Jiana,Peng, Liu,Zhang, Chao,Zhu, Qinlong,Fu, Minglian,Yuan, Xiaoyan. 2017

[11]High-throughput sequencing of highbush blueberry transcriptome and analysis of basic helix-loop-helix transcription factors. Song Yang,Liu Hong-di,Zhang Hong-jun,Wang Hai-bo,Liu Feng-zhi,Zhou Qiang,Zhang Zhi-dong,Li Ya-dong. 2017

[12]Comparative transcriptome analysis of soybean response to bean pyralid larvae. Sun, Zudong,Cai, Zhaoyan,Chen, Huaizhu,Lai, Zhenguang,Yang, Shouzhen,Tang, Xiangmin. 2017

[13]Comparative transcriptome analysis of Ziziphus jujuba infected by jujube witches' broom phytoplasmas. Fan, Xin-Ping,Liu, Wei,Qiao, Yong-Sheng,Shang, Yong-Jin,Wang, Guo-Ping,Tian, Xin,Fan, Xin-Ping,Liu, Wei,Shang, Yong-Jin,Wang, Guo-Ping,Han, Yuan-Huai,Bertaccini, Assunta. 2017

[14]Comparative transcriptome profiling of a rice line carrying Xa39 and its parents triggered by Xanthomonas oryzae pv. oryzae provides novel insights into the broad-spectrum hypersensitive response. Zhang, Fan,Huang, Li-Yu,Zhang, Fan,Zhuo, Da-Long,Li, Zhi-kang,Zhou, Yong-Li,Huang, Li-Yu,Ali, Jauhar,Cruz, Casiana Vera,Du, Zheng-Lin. 2015

[15]Gonadal transcriptomic analysis of yellow catfish (Pelteobagrus fulvidraco): identification of sex-related genes and genetic markers. Lu, Jianguo,Luan, Peixian,Zhang, Xiaofeng,Xue, Shuqun,Peng, Lina,Sun, Xiaowen,Lu, Jianguo,Lu, Jianguo,Luan, Peixian,Zhang, Xiaofeng,Xue, Shuqun,Sun, Xiaowen,Peng, Lina,Mahbooband, Shahid.

[16]Transcriptome Sequencing Analyses between the Cytoplasmic Male Sterile Line and Its Maintainer Line in Welsh Onion (Allium fistulosum L.). Liu, Qianchun,Wen, Changlong,Zhao, Hong,Wang, Jian,Wang, Yongqin,Lan, Yanping. 2016

[17]Transcriptome analysis of nitrogen-starvation-responsive genes in rice. Yang, Wenzhu,Yoon, Jinmi,Choi, Heebak,An, Gynheung,Yang, Wenzhu,Yoon, Jinmi,Choi, Heebak,An, Gynheung,Yang, Wenzhu,Fan, Yunliu,Chen, Rumei,Yang, Wenzhu,Fan, Yunliu,Chen, Rumei. 2015

[18]Embryonal Control of Yellow Seed Coat Locus ECY1 Is Related to Alanine and Phenylalanine Metabolism in the Seed Embryo of Brassica napus. Wang, Fulin,Shi, Jianghua,Zheng, Tao,Wu, Guanting,Liu, Renhu,He, Jiewang,Xu, Fei,Liu, Renhu,Liu, Shengyi. 2016

[19]ThPP1 gene, encodes an inorganic pyrophosphatase in Thellungiella halophila, enhanced the tolerance of the transgenic rice to alkali stress. He, Rui,Han, Xiaori,He, Rui,Yu, Guohong,Han, Jiao,Li, Wei,Wang, Bing,Huang, Shengcai,Cheng, Xianguo,Han, Jiao.

[20]PeanutDB: an integrated bioinformatics web portal for Arachis hypogaea transcriptomics. Shu, Changlong,Zhang, Jie,Schmidt, Emily,Li, Pei,Lenox, Douglas,Liu, Lin,Liang, Chun,Schmidt, Emily,Lenox, Douglas,Liang, Chun. 2012

作者其他论文 更多>>