Arsenic accumulation and speciation in rice grown in arsanilic acid-elevated paddy soil
文献类型: 外文期刊
第一作者: Geng, Anjing
作者: Geng, Anjing;Wang, Xu;Wang, Fuhua;Geng, Anjing;Wu, Lishu;Chen, Yan;Zhang, Zhan;Yang, Hui;Zhao, Xiaoli
作者机构:
关键词: Rice;Arsanilic acid;Arsenic speciatMn;Accumulation;Metabolism;HPLC-ICP-MS
期刊名称:ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY ( 影响因子:6.291; 五年影响因子:6.393 )
ISSN:
年卷期:
页码:
收录情况: SCI
摘要: P-arsanilic acid (MA) is a emerging but less concerned contaminant used in animal feeding operations, for it can be degraded to more toxic metabolites after being excreted by animals. Rice is the staple food in many parts of the world, and also more efficient in accumulating arsenic (As) compared to other cereals. However, the uptake and transformation of MA by rice is unclear. This study aimed to evaluate the potential risk of using MA as a feed additive and using the AsA contaminated animal manure as a fertilizer. Five rice cultivars were grown in soil containing 100 mg AsA/kg soil, after harvest, As species and their concentrations in different tissues were determined. Total As concentration of the hybrid rice cultivar was more than conventional rice cultivars for whole rice plant. For rice organs, the highest As concentration was found in roots. MA could be absorbed by rice, partly degraded and converted to arsenite, monomethylarsonic acid, dimethylarsinic acid, arsenate. The number of As species and their concentrations in each cultivar were related to their genotypes. The soil containing 100 mg AsA/kg or more is unsuitable for growing rice. The use of AsA and the disposal of animal manure requires detailed attention.
分类号: X`R12`R99
- 相关文献
作者其他论文 更多>>
-
A synthetic antibiotic class with a deeply-optimized design for overcoming bacterial resistance
作者:Feng, Jin;Peng, Dapeng;Wang, Xu;Feng, Jin;Weng, Defeng;Wang, Xu;Zheng, Youle;Ma, Wanqing;Weng, Defeng;Peng, Dapeng;Wang, Xu;Xu, Yindi;Wang, Zhifang
关键词:
-
Nitrogen addition alters aboveground C:N:P stoichiometry of plants but not for belowground in an Inner Mongolia grassland
作者:Wang, Ziqi;An, Yixin;Li, Ying;Yu, Qiang;Wang, Jie;Wang, Xu;Wu, Honghui;Yang, Tian;Zhang, Yunlong;Bian, Jianlin;Ren, Haiyan;Lkhagva, Ariuntsetseg
关键词:nitrogen deposition; C:N:P stoichiometry; grassland ecosystem; community level; belowground
-
Phased gap-free genome assembly of octoploid cultivated strawberry illustrates the genetic and epigenetic divergence among subgenomes
作者:Song, Yanhong;Liu, Lifeng;Li, Gang;Zhao, Xia;Zhou, Houcheng;Peng, Yanling;Wang, Xu;Cao, Shuo;Zhou, Yongfeng;Muyle, Aline;Zhou, Yongfeng
关键词:
-
pOsHAK1:OsSUT1 Promotes Sugar Transport and Enhances Drought Tolerance in Rice
作者:Chen, Guang;Lian, Wenli;Geng, Anjing;Wang, Yihan;Liu, Minghao;Zhang, Yue;Wang, Xu;Chen, Guang;Lian, Wenli;Geng, Anjing;Wang, Yihan;Liu, Minghao;Zhang, Yue;Wang, Xu;Chen, Guang;Lian, Wenli;Geng, Anjing;Wang, Yihan;Liu, Minghao;Zhang, Yue;Wang, Xu
关键词:rice; drought tolerance; sugar transport; inducible promoter
-
Multiomics Analyses Reveal the Dual Role of Flavonoids in Pigmentation and Abiotic Stress Tolerance of Soybean Seeds
作者:Jiang, Ling;Yang, Xiaofeng;Gao, Xiewang;Huang, Shan;Zhu, Jianyu;Zhou, Hong;Li, Xiaohong;Gu, Xiaoyan;Jiang, Ling;Huang, Yong;Xiao, Mu;Gao, Xiewang;Yang, Hui;Zhou, Hongming;Liang, Zeya;Yang, Antong;Xiao, Mu;Ma, Shumei;Huang, Yong;Xiao, Mu;Huang, Yong
关键词:soybean; seedcoat color; abiotic stress; multiomics; flavonoids
-
Community assembly of organisms regulates soil microbial functional potential through dual mechanisms
作者:Zhu, Lingyue;Luan, Lu;Chen, Yan;Wang, Xiaoyue;Zhang, Jiabao;Jiang, Yuji;Sun, Bo;Zhu, Lingyue;Zhou, Shungui;Zou, Wenxiu;Han, Xiaori;Duan, Yinghua;Zhu, Bo;Li, Yan;Liu, Wenzhao;Liu, Wenzhao;Zhou, Jizhong;Zhang, Jiabao;Jiang, Yuji
关键词:balanced fertilization; deterministic and stochastic processes; environmental factors; functional genes; nutrient stoichiometry; organism groups
-
AflaILVB/G/I and AflaILVD are involved in mycelial production, aflatoxin biosynthesis, and fungal virulence in Aspergillus flavus
作者:Zhao, Yarong;Huang, Chulan;Zeng, Rui;Chen, Peirong;Xu, Kaihang;Huang, Xiaomei;Wang, Xu;Zhao, Yarong;Huang, Chulan;Zeng, Rui;Chen, Peirong;Xu, Kaihang;Huang, Xiaomei;Wang, Xu;Zhao, Yarong;Huang, Chulan;Zeng, Rui;Chen, Peirong;Xu, Kaihang;Huang, Xiaomei;Wang, Xu
关键词:Aspergillus flavus; aflatoxin biosynthesis; branched-chain amino acids; AflaILVB/G/I; AflaILVD; fungal secondary metabolites