Nitric oxide mediates brassinosteroid-induced flavonoid biosynthesis in Camellia sinensis L.

文献类型: 外文期刊

第一作者: Li, Xin

作者: Li, Xin;Zhang, Lan;Ahammed, Golam Jalal;Li, Zhi-Xin;Wei, Ji-Peng;Shen, Chen;Yan, Peng;Zhang, Li-Ping;Han, Wen-Yan;Ahammed, Golam Jalal;Wei, Ji-Peng;Shen, Chen

作者机构:

关键词: Brassinosteroid;Flavonoids;Nitric oxide;Phenylalanine;ammonia-lyase (PAL);Secondary metabolism

期刊名称:JOURNAL OF PLANT PHYSIOLOGY ( 影响因子:3.549; 五年影响因子:4.164 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Flavonoids are one of the key secondary metabolites determining the quality of tea. Although exogenous brassinosteroid (BR), a steroidal plant hormone, can stimulate polyphenol biosynthesis in tea plants (Camellia sinensis L.), the relevance of endogenous BR in flavonoid accumulation and the underlying mechanisms remain largely unknown. Here we show that BR enhances flavonoid concentration in tea leaves by inducing an increase in the endogenous concentration of nitric oxide (NO). Notably, exogenous BR increased levels of flavonoids as well as NO in a concentration dependent manner, while suppression of BR levels by an inhibitor of BR biosynthesis, brassinazole (BRz), decreased the concentrations of both flavonoids and NO in tea leaves. Interestingly, combined treatment of BR and BRz reversed the inhibitory effect of BRz alone on the concentrations of flavonoids and NO. Likewise, exogenous NO also increased flavonoids and NO levels dose-dependently. When the NO level in tea leaves was suppressed by using a NO scavenger, 2,4-carboxyphenyl4,4,5,5-tetramethylimidazoline- 1-oxyl-3-oxide (cPTIO), flavonoid concentration dramatically decreased. Although individual application of 0.1 mu M BR increased the concentrations of flavonoids and NO, combined treatment with exogenous NO scavenger, cPTIO, reversed the effect of BR on flavonoid concentration. Furthermore, BR or sodium nitroprusside (SNP) promoted but cPTIO inhibited the transcription and activity of phenylalanine ammonia-lyase (PAL) in leaves, while combined treatment of BR with SNP or cPTIO had no additive effect. The results of this study suggest that an optimal level of endogenous NO is essential for BRinduced promotion of flavonoid biosynthesis in tea leaves. In conclusion, this study unveiled a crucial mechanism of BR-induced flavonoid biosynthesis, which might have potential implication in improving the quality of tea.

分类号: F3

  • 相关文献

[1]Optimisation for resveratrol accumulation during peanut germination with phenylalanine feeding & ultrasound-treatment using response surface methodology. Yu, Miao,Yu, Miao,Liu, Hongzhi,Yang, Ying,Shi, Aimin,Liu, Li,Hui, Hui,Wang, Qiang,Yu, Miao. 2016

[2]A genotypic difference in primary root length is associated with the inhibitory role of transforming growth factor-beta receptor-interacting protein-1 on root meristem size in wheat. He, Xue,Fang, Jingjing,Li, Jingjuan,Qu, Baoyuan,Ren, Yongzhe,Ma, Wenying,Zhao, Xueqiang,Li, Bin,Wang, Daowen,Li, Zhensheng,Tong, Yiping,Fang, Jingjing,Li, Jingjuan,Ren, Yongzhe. 2014

[3]Characterization and cloning of SMALL GRAIN 4, a novel DWARF11 allele that affects brassinosteroid biosynthesis in rice. Shi, Zhenyuan,Rao, Yuchun,Xu, Jie,Hu, Shikai,Fang, Yunxia,Yu, Haiping,Pan, Jiangjie,Liu, Ruifang,Ren, Deyong,Wang, Xiaohu,Zhu, Yangzhou,Zhu, Li,Dong, Guojun,Zhang, Guangheng,Zeng, Dali,Guo, Longbiao,Hu, Jiang,Qian, Qian,Rao, Yuchun,Zhu, Yangzhou,Xu, Jie. 2015

[4]Somatic embryogenesis receptor-like kinase 5 in the ecotype Landsberg erecta of Arabidopsis is a functional RD LRR-RLK in regulating brassinosteroid signaling and cell death control. Wu, Wangze,Wu, Yujun,Gao, Yang,Li, Meizhen,Yin, Hongju,Lv, Minghui,Zhao, Jianxin,Li, Jia,He, Kai,Wu, Wangze. 2015

[5]Integrative RNA-and miRNA-Profile Analysis Reveals a Likely Role of BR and Auxin Signaling in Branch Angle Regulation of B. napus. Cheng, Hongtao,Hao, Mengyu,Wang, Wenxiang,Mei, Desheng,Liu, Jia,Wang, Hui,Sang, Shifei,Tang, Min,Zhou, Rijin,Chu, Wen,Fu, Li,Hu, Qiong,Wells, Rachel. 2017

[6]Transcriptome Analysis of Pepper (Capsicum annuum) Revealed a Role of 24-Epibrassinolide in Response to Chilling. Li, Jie,Yu, Jihua,Lyu, Jian,Zhang, Guobin,Feng, Zhi,Xie, Jianming,Yang, Ping,Kang, Jungen,Gan, Yantai,Gan, Yantai,Calderon-Urrea, Alejandro. 2016

[7]A Quantitative Proteomic Analysis of Brassinosteroid-induced Protein Phosphorylation in Rice (Oryza sativa L.). Hou, Yuxuan,Qiu, Jiehua,Wang, Yifeng,Li, Zhiyong,Zhao, Juan,Tong, Xiaohong,Lin, Haiyan,Zhang, Jian,Lin, Haiyan. 2017

[8]BZS1, a B-box Protein, Promotes Photomorphogenesis Downstream of Both Brassinosteroid and Light Signaling Pathways. Bai, Ming-Yi,Wang, Zhi-Yong,Fan, Xi-Ying,Cao, Dong-Mei,Luo, Xiao-Min,Yang, Hong-Juan,Zhu, Sheng-Wei,Chong, Kang,Fan, Xi-Ying,Sun, Yu,Wei, Chuang-Qi,Sun, Ying,Cao, Dong-Mei,Fan, Xi-Ying. 2012

[9]Effects of exogenous 24-epibrassinolide treatment on postharvest quality and resistance of Satsuma mandarin (Citrus unshiu). Zhu, Feng,Yun, Ze,Ma, Qiaoli,Gong, Qi,Zeng, Yunliu,Xu, Juan,Cheng, Yunjiang,Deng, Xiuxin,Yun, Ze,Gong, Qi.

[10]OsMAPK6, a mitogen-activated protein kinase, influences rice grain size and biomass production. Liu, Shuying,Hua, Lei,Dong, Sujun,Jiang, Jun'e,Zhang, Fang,Fang, Xiaohua,Chen, Fan,Chen, Hongqi,Zhu, Xudong,Li, Yunhai.

[11]Transcriptional profiling of the responses to infection by the false smut fungus Ustilaginoidea virens in resistant and susceptible rice varieties. Yang, Chao,Li, Luoye,Li, Jianxiong,Feng, Aiqing,Zhu, Xiaoyuan.

[12]Dissecting the Variations of Ripening Progression and Flavonoid Metabolism in Grape Berries Grown under Double Cropping System. Wang, Yu,He, Lei,Yang, Xiao-Hui,He, Fei,Duan, Chang-Qing,Wang, Jun,Chen, Wei-Kai,Wang, Yu,He, Lei,Yang, Xiao-Hui,He, Fei,Duan, Chang-Qing,Wang, Jun,Bai, Xian-Jin,Cao, Mu-Ming,Cheng, Guo,Cao, Xiong-Jun,Guo, Rong-Rong. 2017

[13]Comparative Proteomic Analysis of the Graft Unions in Hickory (Carya cathayensis) Provides Insights into Response Mechanisms to Grafting Process. Xu, Dongbin,Yuan, Huwei,Tong, Yafei,Zhao, Liang,Qiu, Lingling,Guo, Wenbin,Yan, Daoliang,Zheng, Bingsong,Xu, Dongbin,Yuan, Huwei,Tong, Yafei,Zhao, Liang,Qiu, Lingling,Guo, Wenbin,Yan, Daoliang,Zheng, Bingsong,Shen, Chenjia,Liu, Hongjia. 2017

[14]Genetic and metabolic engineering of isoflavonoid biosynthesis. Du, Hai,Huang, Yubi,Du, Hai,Tang, Yixiong. 2010

[15]Genome Sequence of Pseudomonas koreensis CRS05-R5, an Antagonistic Bacterium Isolated from Rice Paddy Field. Lin, Haiyan,Hu, Shikai,Liu, Ruifang,Chen, Ping,Ge, Changwei,Guo, Longbiao,Lin, Haiyan,Liu, Ruifang,Zhu, Bo. 2016

[16]Brassinosteroids Improve Quality of Summer Tea (Camellia sinensis L.) by Balancing Biosynthesis of Polyphenols and Amino Acids. Li, Xin,Ahammed, Golam J.,Li, Zhi-Xin,Zhang, Lan,Wei, Ji-Peng,Shen, Chen,Yan, Peng,Zhang, Li-Ping,Han, Wen-Yan,Ahammed, Golam J.,Li, Zhi-Xin,Shen, Chen. 2016

[17]Whole genome sequence of Pseudomonas aeruginosa F9676, an antagonistic bacterium isolated from rice seed. Shi, Zhenyuan,Ren, Deyong,Hu, Shikai,Hu, Xingming,Wu, Liwen,Lin, Haiyan,Hu, Jiang,Zhang, Guangheng,Guo, Longbiao,Hu, Shikai,Lin, Haiyan.

[18]Whole genome sequence of Pantoea ananatis R100, an antagonistic bacterium isolated from rice seed. Wu, Liwen,Liu, Ruifang,Niu, Yaofang,Lin, Haiyan,Ye, Weijun,Guo, Longbiao,Hu, Xingming,Liu, Ruifang,Lin, Haiyan.

[19]Genome-Wide Analysis Reveals the Secondary Metabolome in Streptomyces kanasensis ZX01. Zhang, Guoqiang,Feng, Juntao,Han, Lirong,Zhang, Xing,Zhang, Guoqiang,Yu, Dailin,Sang, Bu. 2017

[20]INFLUENCE OF P DEFICIENCY ON MAJOR SECONDARY METABOLISM IN FLAVONOIDS SYNTHESIS PATHWAY OF CHRYSANTHEMUM MORIFOLIUM RAMAT. Liu, Wei,Wang, Xiao,Zhu, Duan-Wei,Geng, Ming-Jian,Yang, Te-Wu,Liu, Da-Hui.

作者其他论文 更多>>