Induction of telomere-mediated chromosomal truncation and behavior of truncated chromosomes in Brassica napus

文献类型: 外文期刊

第一作者: Yan, Xiaohong

作者: Yan, Xiaohong;Li, Chen;Yang, Jie;Wang, Lijun;Jiang, Chenghong;Wei, Wenhui;Li, Chen;Wei, Wenhui;Li, Chen

作者机构:

关键词: Brassica napus;chromosomal truncation;telomere repeats;engineered chromosome;site-specific recombination

期刊名称:PLANT JOURNAL ( 影响因子:6.417; 五年影响因子:7.627 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Engineered minichromosomes could be stably inherited and serve as a platform for simultaneously transferring and stably expressing multiple genes. Chromosomal truncation mediated by repeats of telomeric sequences is a promising approach for the generation of minichromosomes. In the present work, direct repetitive sequences of Arabidopsis telomere were used to study telomere-mediated truncation of chromosomes in Brassica napus. Transgenes containing alien Arabidopsis telomere were successfully obtained, and Southern blotting and fluorescence in situ hybridization (FISH) results show that the transgenes resulted in successful chromosomal truncation in B. napus. In addition, truncated chromosomes were inherited at rates lower than that predicted by Mendelian rules. To determine the potential manipulations and applications of the engineered chromosomes, such as the stacking of multiple transgenes and the Cre/lox and FRT/FLP recombination systems, both amenable to genetic manipulations through site-specific recombination in somatic cells, were tested for their ability to undergo recombination in B. napus. These results demonstrate that alien Arabidopsis telomere is able to mediate chromosomal truncation in B. napus. This technology would be feasible for chromosomal engineering and for studies on chromosome structure and function in B. napus.

分类号: Q94

  • 相关文献

[1]Bxb1 integrase serves as a highly efficient DNA recombinase in rapid metabolite pathway assembly. Wang, Xianwei,Tang, Biao,Mao, Yayi,Lei, Xiaolai,Zhao, Guoping,Ding, Xiaoming,Tang, Biao,Zhao, Guoping,Tang, Biao,Ye, Yu,Zhao, Guoping,Ye, Yu,Zhao, Guoping. 2017

[2]A chemical-inducible Cre-LoxP system allows for elimination of selection marker genes in transgenic apricot. Petri, Cesar,Lopez-Noguera, Sonia,Wang, Hong,Garcia-Almodovar, Carlos,Alburquerque, Nuria,Burgos, Lorenzo,Wang, Hong.

[3]Expression of Aquaporin BnPIP-like Gene from Rapeseed (Brassica napus) Enhances Salt Resistance in Yeast (Pichia pastoris). Li, Hao-Jie,Zhang, Jin-Fang,Cui, Cheng,Jiang, Jun,Zheng, Ben-Chuan,Jiang, Liang-Cai,Tan, Hao,Zhang, Bi. 2016

[4]Comparative Transcriptomic Analysis of Two Brassica napus Near-Isogenic Lines Reveals a Network of Genes That Influences Seed Oil Accumulation. Wang, Jingxue,Li, Chen,Yuan, Ling,Singh, Sanjay K.,Pattanaik, Sitakanta,Yuan, Ling,Du, Chunfang,Fan, Jianchun. 2016

[5]PHOTOSYNTHESIS AND ANTIOXIDANT RESPONSE TO WINTER RAPESEED (BRASSICA NAPUS L.) AS AFFECTED BY BORON. Hossain, Md Faruque,Pan Shenggang,Duan Meiyang,Mo Zhaowen,Karbo, Maurice Baimba,Tang Xiangru,Hossain, Md Faruque,Pan Shenggang,Duan Meiyang,Mo Zhaowen,Karbo, Maurice Baimba,Tang Xiangru,Hossain, Md Faruque,Bano, Asghari. 2015

[6]Diversity and biocontrol potential of endophytic fungi in Brassica napus. Zhang, Jing,Yang, Long,Jiang, Daohong,Li, Guoqing,Zhang, Qinghua,Zhang, Jing,Yang, Long,Jiang, Daohong,Li, Guoqing,Zhang, Lei,Chen, Weidong. 2014

[7]New insights into the genetic networks affecting seed fatty acid concentrations in Brassica napus. Wang, Xiaodong,Yin, Yongtai,Gan, Lu,Yu, Longjiang,Li, Maoteng,Long, Yan,Zhang, Chunyu,Meng, Jinling,Long, Yan,Wang, Xiaodong,Liu, Liezhao. 2015

[8]A Study on Triacylglycerol Composition and the Structure of High-Oleic Rapeseed Oil. Guan, Mei,Xiong, Xinghua,Li, Xun,Guan, Chunyun,Chen, Hong,Lu, Xin,Huang, Fenghong. 2016

[9]Genetic diversity of Brassica carinata with emphasis on the interspecific crossability with B-rapa. Jiang, Y.,Tian, E.,Li, R.,Chen, L.,Meng, J.. 2007

[10]Morphological Structure and Transcriptome Comparison of the Cytoplasmic Male Sterility Line in Brassica napus (SaNa-1A) Derived from Somatic Hybridization and Its Maintainer Line SaNa-1B. Du, Kun,Liu, Qier,Wu, Xinyue,Jiang, Jinjin,Wu, Jian,Fang, Yujie,Wang, Youping,Li, Aimin. 2016

[11]Quantitative trait loci analysis and genome-wide comparison for silique related traits in Brassica napus. Wang, Xiaodong,Chen, Li,Chao, Hongbo,Li, Maoteng,Wang, Xiaodong,Chen, Li,Xiang, Jun,Gan, Jianping,Wang, Aina,Wang, Hao,Tian, Jianhua,Zhao, Xiaoping,Zhao, Yajun,Zhao, Weiguo. 2016

[12]Genome-Wide Association and Transcriptome Analyses Reveal Candidate Genes Underlying Yield-determining Traits in Brassica napus. Lu, Kun,Peng, Liu,Zhang, Chao,Lu, Junhua,Yang, Bo,Xiao, Zhongchun,Liang, Ying,Xu, Xingfu,Qu, Cunmin,Zhang, Kai,Liu, Liezhao,Li, Jiana,Peng, Liu,Zhang, Chao,Zhu, Qinlong,Fu, Minglian,Yuan, Xiaoyan. 2017

[13]Transcriptome Analysis of Stem and Globally Comparison with Other Tissues in Brassica napus. Miao, Liyun,Zhang, Libin,Raboanatahiry, Nadia,Fu, Chunhua,Li, Maoteng,Miao, Liyun,Xiang, Jun,Gan, Jianping,Li, Maoteng,Lu, Guangyuan,Zhang, Xuekun. 2016

[14]SCAR and RAPD markers associated with 18-carbon fatty acids in rapeseed, Brassica napus. Hu, J,Li, G,Struss, D,Quiros, CF. 1999

[15]Genetic diversity among populations and breeding lines from recurrent selection in Brassica napus as revealed by RAPD markers. Yuan, M,Zhou, Y,Liu, D. 2004

[16]Identification of the Relationship between Oil Body Morphology and Oil Content by Microstructure Comparison Combining with QTL Analysis in Brassica napus. Gu, Jianwei,Chao, Hongbo,Li, Maoteng,Gu, Jianwei,Xiang, Jun,Gan, Jianping,Li, Maoteng,Wang, Hao,Li, Yonghong,Li, Dianrong,Lu, Guangyuan,Zhang, Xuekun,Long, Yan. 2017

[17]Identification and Analysis of MS5(d): A Gene That Affects Double-Strand Break (DSB) Repair during Meiosis I in Brassica napus Microsporocytes. Zeng, Xinhua,Yan, Xiaohong,Yuan, Rong,Li, Keqi,Wu, Yuhua,Liu, Fang,Luo, Junling,Li, Jun,Wu, Gang. 2017

[18]Intergeneric hybrids between Brassica napus and Orychophragmus violaceus containing traits of agronomic importance for oilseed rape breeding. Hu, Q,Hansen, LN,Laursen, J,Dixelius, C,Andersen, SB. 2002

[19]Global analysis of canola genes targeted by SHORT HYPOCOTYL UNDER BLUE 1 during endosperm and embryo development. Zhang, Huanan,Kuang, Rui,Cheng, Feng,Wang, Xiaowu,Xiao, Yuguo,Kang, Xiaojun,Ni, Min. 2017

[20]Phenotypic and genotypic changes in rapeseed after 18 years of storage and regeneration. Wu, XM,Wu, NF,Qian, XZ,Li, RG,Huang, FH,Zhu, L. 1998

作者其他论文 更多>>