Reconstructing daily clear-sky land surface temperature for cloudy regions from MODIS data

文献类型: 外文期刊

第一作者: Sun, Liang

作者: Sun, Liang;Chen, Zhongxin;Wang, Limin;Sun, Liang;Gao, Feng;Anderson, Martha;Yang, Yun;Song, Lisheng;Hu, Bo

作者机构:

关键词: MODIS;Land surface temperature;Reconstruction;Remotely Sensed DAily land Surface;Temperature reconstruction (RSDAST) model;TVDI

期刊名称:COMPUTERS & GEOSCIENCES ( 影响因子:3.372; 五年影响因子:3.696 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Land surface temperature (LST) is a critical parameter in environmental studies and resource management. The MODIS LST data product has been widely used in various studies, such as drought monitoring, evapotranspiration mapping, soil moisture estimation and forest fire detection. However, cloud contamination affects thermal band observations and will lead to inconsistent LST results. In this study, we present a new Remotely Sensed DAily land Surface Temperature reconstruction (RSDAST) model that recovers clear sky LST for pixels covered by cloud using only clear-sky neighboring pixels from nearby dates. The reconstructed LST was validated using the original LST pixels. Model shows high accuracy for reconstructing one masked pixel with R-2 of 0.995, bias of -0.02 K and RMSE of 0.51 K. Extended spatial reconstruction results show a better accuracy for flat areas with R-2 of 0.72-0.89, bias of -0.02-0.21 K, and RMSE of 0.92-1.16 K, and for mountain areas with R-2 of 0.81-0.89, bias of 0.35-1.52 K, and RMSE of 1.42-2.24 K. The reconstructed areas show spatial and temporal patterns that are consistent with the clear neighbor areas. In the reconstructed LST and NDVI triangle feature space which is controlled by soil moisture, LST values distributed reasonably and correspond well to the real soil moisture conditions. Our approach shows great potential for reconstructing clear sky LST. under cloudy conditions and provides consistent daily LST which are critical for daily drought monitoring.

分类号: TP39`P

  • 相关文献

[1]Mapping drought status of winter wheat from MODIS data in North China Plain. Gao, Lei,Qin, Zhihao,Lu, Liping,Pei, Huan,Qin, Zhihao,Xu, Bin. 2007

[2]Drought Change Trend Using MODIS TVDI and Its Relationship with Climate Factors in China from 2001 to 2010. Liang Liang,Zhao Shu-he,He Ke-xun,Luo Yun-xiao,Liang Liang,Chen Chong,Zhou Xing-dong,Liang Liang,Zhao Shu-he,He Ke-xun,Luo Yun-xiao,Qin Zhi-hao. 2014

[3]An Algorithm for Retrieving Land Surface Temperatures Using VIIRS Data in Combination with Multi-Sensors. Xia, Lang,Mao, Kebiao,Ma, Ying,Zhao, Fen,Qin, Zhihao,Jiang, Lipeng,Shen, Xinyi. 2014

[4]An Efficient Approach for Pixel Decomposition to Increase the Spatial Resolution of Land Surface Temperature Images from MODIS Thermal Infrared Band Data. Wang, Fei,Song, Caiying,Zhao, Shuhe,Qin, Zhihao,Li, Wenjuan,Karnieli, Arnon,Zhao, Shuhe. 2015

[5]Evaluation of ASTER-Like Daily Land Surface Temperature by Fusing ASTER and MODIS Data during the HiWATER-MUSOEXE. Yang, Guijun,Sun, Chenhong,Zhao, Chunjiang,Weng, Qihao,Weng, Qihao,Pu, Ruiliang,Gao, Feng,Li, Hua. 2016

[6]Linked vs. unlinked markers: multilocus microsatellite haplotype-sharing as a tool to estimate gene flow and introgression. Koopman, Wim J. M.,Li, Yinghui,Coart, Els,De Weg, Eric Van,Vosman, Ben,Roldan-Ruiz, Isabel,Smulders, Marinus J. M..

[7]Study on Drought Index in Major Planting Area of Winter Wheat of China. Sun, Li,Li, Baoguo,Sun, Li,Wu, Quan,Pei, Zhiyuan,Chen, Xiwei.

[8]Spatio-temporal variation of alpine grassland spring phenological and its response to environment factors northeastern of Qinghai-Tibetan Plateau during 2000-2016. Li, Guangyong,Jiang, Guanghui,Li, Guangyong,Bai, Ju,Jiang, Cuihong. 2017

[9]An algorithm to retrieve land surface temperature from ASTER thermal band data for agricultural drought monitoring. Qin, Zhihao,Li, Wenjuan,Gao, Maofang,Zhang, Hong'ou,Qin, Zhihao. 2006

[10]ESTIMATION OF SURFACE SOIL MOISTURE USING FENGYUN-2E (FY-2E) DATA: A CASE STUDY OVER THE SOURCE AREA OF THE YELLOW RIVER. Wang, Yawei,Song, Xiaoning,Sun, Chuan,Liu, Xin,Leng, Pei. 2016

[11]Integrating seasonal optical and thermal infrared spectra to characterize urban impervious surfaces with extreme spectral complexity: a Shanghai case study. Wang, Wei,Ji, Minhe,Yao, Xinfeng. 2016

[12]Ground temperature measurement and emissivity determination to understand the thermal anomaly and its significance on the development of an arid environmental ecosystem in the sand dunes across the Israel-Egypt border. Qin, Z,Berliner, PR,Karnieli, A.

[13]Estimation of land surface emissivity for Landsat TM6 and its application to Lingxian Region in north China. Qin, Zhihao,Li, Wenjuan,Gao, Maofang,Zhang, Hong'ou,Qin, Zhihao. 2006

[14]Impacts of land use/cover change on spatial variation of land surface temperature in Urumqi, China. Pei, Huan,Qin, Zhihao,Zhang, Chunling,Lu, Liping,Qin, Zhihao,Xu, Bin,Gao, Maofang,Fang, Shifeng. 2007

[15]Derivation of Land Surface Temperature for Landsat-8 TIRS Using a Split Window Algorithm. Rozenstein, Offer,Karnieli, Arnon,Qin, Zhihao,Derimian, Yevgeny. 2014

[16]Forecasting of Powdery Mildew disease with multi-sources of remote sensing information. Zhang, Jingcheng,Yuan, Lin,Nie, Chenwei,Wei, Liguang,Yang, Guijun,Zhang, Jingcheng,Yang, Guijun,Zhang, Jingcheng,Yang, Guijun,Zhang, Jingcheng,Yuan, Lin. 2014

[17]Comparison of split window algorithms for land surface temperature retrieval from NOAA-AVHRR data. Qin, ZH,Xu, B,Zhang, WC,Li, WJ,Chen, ZX,Zhang, HO. 2004

[18]Impacts of urban biophysical composition on land surface temperature in urban heat island clusters. Guo, Guanhua,Liu, Xiaonan,Guo, Guanhua,Liu, Xiaonan,Guo, Guanhua,Liu, Xiaonan,Wu, Zhifeng,Chen, Yingbiao,Zhang, Xiaoshi,Xiao, Rongbo.

[19]Selecting the Optimal NDVI Time-Series Reconstruction Technique for Crop Phenology Detection. Wei, Wei,Wu, Wenbin,Li, Zhengguo,Yang, Peng,Zhou, Qingbo. 2016

[20]A Satellite-Based Model for Simulating Ecosystem Respiration in the Tibetan and Inner Mongolian Grasslands. Ge, Rong,He, Honglin,Ren, Xiaoli,Zhang, Li,Zeng, Na,Yu, Guirui,Zhang, Liyun,Shi, Peili,Ge, Rong,Zeng, Na,Zhang, Liyun,Wang, Yanfen,Ma, Yaoming,He, Honglin,Zhang, Li,Yu, Guirui,Li, Pan,Yu, Shi-Yong,Zhang, Fawei,Li, Hongqin,Chen, Shiping,Xin, Xiaoping,Ma, Yaoming,Ma, Yaoming,Ma, Mingguo,Zhang, Yu,Du, Mingyuan. 2018

作者其他论文 更多>>