Fine mapping of LOW TILLER 1, a gene controlling tillering and panicle branching in rice

文献类型: 外文期刊

第一作者: Yu, Haiping

作者: Yu, Haiping;Qiu, Zhennan;Xu, Qiankun;Wang, Zhongwei;Zeng, Dali;Hu, Jiang;Zhang, Guangheng;Zhu, Li;Gao, Zhenyu;Chen, Guang;Guo, Longbiao;Qian, Qian;Ren, Deyong;Yu, Haiping

作者机构:

关键词: Rice (Oryza sativa L.);Lt1 mutant;Fewer tillers and panicle branches;Grain size;Fine mapping

期刊名称:PLANT GROWTH REGULATION ( 影响因子:3.412; 五年影响因子:3.691 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Tillering and panicle branching are important agronomic traits that affect rice grain yield. In this study, we characterized the low tiller 1 (lt1) mutant, which was isolated from an ethyl methanesulfonate-treated population of the indica cultivar Shuhui 527. The lt1 mutant had fewer tillers, thicker culms, fewer panicle branches, abnormal spikelets and larger grains. The transcript levels of cell proliferation and expansion-associated genes were altered in the lt1 plant, implying that LT1 affected grain size by regulating cell proliferation and expansion. Genetic analysis showed that the lt1 mutant phenotype was a single, recessive mutation. Using SSR and SNP markers, the LT1 gene was narrowed to a 63 kb distance between the markers ID6 and S12 on the chromosome 6. DNA sequencing revealed no mutations in this region. Despite this, two candidate genes, LOC_Os06g40780/MOC1 and LOC_Os06g40840, exhibited lower expression levels in both tiller buds and young panicles in lt1 compared to wild type. Thus, LOC_Os06g40780/MOC1 or LOC_Os06g40840 may be responsible for the lt1 mutant phenotypes, but more work will be needed for the cloning and functional analysis of LT1. This work lays the foundation for elucidation of the molecular mechanism for tillering and panicle branching, and provides new opportunities for improving rice grain yield.

分类号: S311

  • 相关文献

[1]Regulatory Role of OsMADS34 in the Determination of Glumes Fate, Grain Yield, and Quality in Rice. Ren, Deyong,Rao, Yuchun,Leng, Yujia,Li, Zizhuang,Xu, Qiankun,Wu, Liwen,Qiu, Zhennan,Zeng, Dali,Hu, Jiang,Zhang, Guangheng,Zhu, Li,Gao, Zhenyu,Chen, Guang,Dong, Guojun,Guo, Longbiao,Qian, Qian,Rao, Yuchun,Li, Zizhuang,Xue, Dawei. 2016

[2]Dissection of qTGW1.2 to three QTLs for grain weight and grain size in rice (Oryza sativa L.). Wang, Lin-Lin,Chen, Yu-Yu,Guo, Liang,Zhang, Hong-Wei,Fan, Ye-Yang,Zhuang, Jie-Yun,Wang, Lin-Lin,Chen, Yu-Yu,Guo, Liang,Zhang, Hong-Wei,Fan, Ye-Yang,Zhuang, Jie-Yun.

[3]Fine Mapping of a Novel defective glume 1 (dg1) Mutant, Which Affects Vegetative and Spikelet Development in Rice. Yu, Haiping,Ruan, Banpu,Zhang, Yu,Chen, Wenfu,Yu, Haiping,Ruan, Banpu,Zhang, Yu,Chen, Wenfu,Yu, Haiping,Ruan, Banpu,Wang, Zhongwei,Ren, Deyong,Zhang, Yu,Leng, Yujia,Zeng, Dali,Hu, Jiang,Zhang, Guangheng,Zhu, Li,Gao, Zhenyu,Chen, Guang,Guo, Longbiao,Qian, Qian. 2017

[4]Validation of qGS10, a quantitative trait locus for grain size on the long arm of chromosome 10 in rice (Oryza sativa L.). Zhuang Jie-yun. 2017

[5]Fine mapping of a major quantitative trait locus, qFLL6.2, controlling flag leaf length and yield traits in rice (Oryza sativa L.). Shen, Bo,Yu, Wei-Dong,Zhu, Yu-Jun,Fan, Ye-Yang,Zhuang, Jie-Yun,Shen, Bo,Yu, Wei-Dong,Zhu, Yu-Jun,Fan, Ye-Yang,Zhuang, Jie-Yun,Shen, Bo,Yu, Wei-Dong. 2012

[6]Fine mapping of qHUS6.1, a quantitative trait locus for silicon content in rice (Oryza sativa L.). Gong JunYi,Wu JiRong,Wang Kai,Fan YeYang,Zhuang JieYun. 2010

[7]Genetic analysis and fine mapping of the pubescence gene GL6 in rice (Oryza sativa L.). Zeng YueHui,Zhu YongSheng,Lian Ling,Xie HongGuang,Zhang JianFu,Xie HuaAn,Zeng YueHui,Zhu YongSheng,Lian Ling,Xie HongGuang,Zhang JianFu,Xie HuaAn. 2013

[8]Genetic analysis and fine mapping of LH1 and LH2, a set of complementary genes controlling late heading in rice (Oryza sativa L.). Yang, Jin Shui,Luo, Xiao Jin,Wang, Feng,Li, Jin Hua,Gao, Li Jun,Li, Rong Bai,Gao, Han Liang,Deng, Guo Fu. 2012

[9]Identification of a novel tillering dwarf mutant and fine mapping of the TDDL(T) gene in rice (Oryza sativa L.). Gao ZhenYu,Guo LongBiao,Liu Jian,Dong GuoJun,Hu Jiang,Qian Qian,Gao ZhenYu,Liu XiaoHui,Han Bin. 2009

[10]Fine mapping and candidate gene analysis of a novel PANICLE AND SPIKELET DEGENERATION gene in rice. Zhang, Yunhui,Lin, Jing,Fang, Xianwen,Xu, Furong,Song, Chunfeng.

[11]Functional Marker Development and Effect Analysis of Grain Size Gene GW2 in Extreme Grain Size Germplasm in Rice. Zhang Ya-dong,Zheng Jia,Liang Yan-li,Zhao Chun-fang,Chen Tao,Zhao Qing-yong,Zhu Zhen,Zhou Li-hui,Yao Shu,Zhao Ling,Yu Xing,Wang Cai-lin. 2015

[12]A Rare Allele of GS2 Enhances Grain Size and Grain Yield in Rice. Hu, Jiang,Wang, Yuexing,Fang, Yunxia,Xu, Jie,Yu, Haiping,Shi, Zhenyuan,Pan, Jiangjie,Zhang, Dong,Zhu, Li,Dong, Guojun,Guo, Longbiao,Zeng, Dali,Zhang, Guangheng,Xie, Lihong,Qian, Qian,Zeng, Longjun,Kang, Shujing,Xiong, Guosheng,Qian, Qian,Li, Jiayang,Li, Jiayang. 2015

[13]SMALL GRAIN 1, which encodes a mitogen-activated protein kinase kinase 4, influences grain size in rice. Duan, Penggen,Xu, Ran,Zhang, Baolan,Li, Yunhai,Duan, Penggen,Rao, Yuchun,Zeng, Dali,Yang, Yaolong,Dong, Guojun,Qian, Qian,Rao, Yuchun. 2014

[14]Spatial heterogeneity of plant species on the windward slope of active sand dunes in a semi-arid region of China. Jiang, DeMing,Miao, ChunPing,Li, XueHua,Alamusa,Zhou, QuanLai,Miao, ChunPing,Li, XiaoLan. 2013

[15]Haplotype, molecular marker and phenotype effects associated with mineral nutrient and grain size traits of TaGS1 a in wheat. Guo, Ying,Sun, Jinjie,Zhang, Guizhi,Wang, Yingying,Kong, Fanmei,Zhao, Yan,Li, Sishen,Guo, Ying,Wang, Yingying. 2013

[16]TaGW2, a Good Reflection of Wheat Polyploidization and Evolution. Qin, Lin,Zhang, Xueyong,Qin, Lin,Zhang, Xueyong,Qin, Lin,Zhao, Junjie,Li, Tian,Hou, Jian,Zhang, Xueyong,Hao, Chenyang. 2017

[17]Identification of QTLs for grain size and characterization of the beneficial alleles of grain size genes in large grain rice variety BL129. Gao Xuan,Luo Yue-hua,Zhu Xu-dong,Gao Xuan,Fang Na,Duan Peng-gen,Wu Ying-bao,Li Yun-hai.

[18]Dissection of the qTGW1.1 region into two tightly-linked minor QTLs having stable effects for grain weight in rice. Zhang, Hong-Wei,Fan, Ye-Yang,Zhu, Yu-Jun,Chen, Jun-Yu,Zhuang, Jie-Yun,Zhang, Hong-Wei,Fan, Ye-Yang,Zhu, Yu-Jun,Chen, Jun-Yu,Zhuang, Jie-Yun,Zhang, Hong-Wei,Yu, Si-Bin,Zhang, Hong-Wei,Yu, Si-Bin. 2016

[19]The effect of grain size of rock phosphate amendment on metal immobilization in contaminated soils. Chen, SB,Zhu, YG,Ma, YB.

[20]SLG controls grain size and leaf angle by modulating brassinosteroid homeostasis in rice. Feng, Zhiming,Wang, Chunming,Zhang, Long,Zhang, Shengzhong,Zhang, Huan,Yang, Chunyan,Hu, Jinlong,You, Xiaoman,Liu, Xi,Yang, Xiaoming,Jiang, Ling,Wan, Jianmin,Wu, Chuanyin,Chen, Jun,Guo, Xiuping,Zhang, Xin,Wu, Fuqing,Wan, Jianmin,Roh, Jeehee,Kim, Seong-Ki,Terzaghi, William.

作者其他论文 更多>>