Fine mapping of LOW TILLER 1, a gene controlling tillering and panicle branching in rice
文献类型: 外文期刊
第一作者: Yu, Haiping
作者: Yu, Haiping;Qiu, Zhennan;Xu, Qiankun;Wang, Zhongwei;Zeng, Dali;Hu, Jiang;Zhang, Guangheng;Zhu, Li;Gao, Zhenyu;Chen, Guang;Guo, Longbiao;Qian, Qian;Ren, Deyong;Yu, Haiping
作者机构:
关键词: Rice (Oryza sativa L.);Lt1 mutant;Fewer tillers and panicle branches;Grain size;Fine mapping
期刊名称:PLANT GROWTH REGULATION ( 影响因子:3.412; 五年影响因子:3.691 )
ISSN:
年卷期:
页码:
收录情况: SCI
摘要: Tillering and panicle branching are important agronomic traits that affect rice grain yield. In this study, we characterized the low tiller 1 (lt1) mutant, which was isolated from an ethyl methanesulfonate-treated population of the indica cultivar Shuhui 527. The lt1 mutant had fewer tillers, thicker culms, fewer panicle branches, abnormal spikelets and larger grains. The transcript levels of cell proliferation and expansion-associated genes were altered in the lt1 plant, implying that LT1 affected grain size by regulating cell proliferation and expansion. Genetic analysis showed that the lt1 mutant phenotype was a single, recessive mutation. Using SSR and SNP markers, the LT1 gene was narrowed to a 63 kb distance between the markers ID6 and S12 on the chromosome 6. DNA sequencing revealed no mutations in this region. Despite this, two candidate genes, LOC_Os06g40780/MOC1 and LOC_Os06g40840, exhibited lower expression levels in both tiller buds and young panicles in lt1 compared to wild type. Thus, LOC_Os06g40780/MOC1 or LOC_Os06g40840 may be responsible for the lt1 mutant phenotypes, but more work will be needed for the cloning and functional analysis of LT1. This work lays the foundation for elucidation of the molecular mechanism for tillering and panicle branching, and provides new opportunities for improving rice grain yield.
分类号: S311
- 相关文献
作者其他论文 更多>>
-
The developments and prospects of plant super-pangenomes: Demands, approaches, and applications
作者:He, Wenchuang;Li, Xiaoxia;Qian, Qian;Shang, Lianguang;Qian, Qian;Shang, Lianguang;Qian, Qian;Qian, Qian;Shang, Lianguang
关键词:pangenomics; super-pangenome; plant; methodology; molecular breeding
-
The First International Symposium of the World Wild Rice Wiring: Conservation and utilization of global wild rice germplasm resources through international cooperation
作者:Ratnasekera, Disna;Zheng, Xiaoming;Qian, Qian;Zheng, Xiaoming;Qian, Qian;Zheng, Xiaoming;Ratnasekera, Disna;Fan, Jiayu;Qian, Qian;Fan, Jiayu;Henry, Robert J.;Song, Beng-Kah;Wambugu, Peterson;Pusadee, Tonapha;Aung, Ohn Mar;Vilayheuang, Koukham
关键词:
-
Knockout of phosphatidate phosphohydrolase genes confers broad-spectrum disease resistance in plants
作者:Gong, Qiuwen;Sha, Gan;Han, Xinyu;Guo, Zhenhua;Yang, Lei;Yang, Wei;Tan, Ronglei;Liu, Meng;Xia, Fengdie;Li, Guotian;Sha, Gan;Chen, Ting;Chen, Guang;Shen, Xin;Xie, Kabin;Hu, Honghong;Li, Qiang;Li, Yufei;Luo, Jie;Cai, Guangqin;Luo, Jie
关键词:genome-editing; phosphatidic acid; Oryza sativa; Arabidopsis; Magnaporthe oryzae
-
Identification and functional characterization of the RPP13 gene family in potato (Solanum tuberosum L.) for disease resistance
作者:Yuan, Baoqi;Li, Chuang;Wang, Qingfeng;Yao, Qi;Guo, Xiaowei;Zhang, Yuhang;Wang, Zhongwei
关键词:potato;
RPP13 gene family; disease resistance; gene expression; subcellular localization -
The differential partition of copper in cell wall and symplastic space contributes to the natural variation of copper toxicity tolerance in rice
作者:Zhang, Jin;Qin, Yuan;Chen, Xuan;Xiao, Nayun;Jiang, Wei;Tang, Haiyang;Zhou, Hui;Qiu, Xianjin;Zeng, Fanrong;Deng, Fenglin;Xu, Jianlong;Chen, Zhong-Hua;Chen, Zhong-Hua;Chen, Guang;Deng, Fenglin
关键词:Copper; Rice (Oryza Sativa); Root elongation; Cell wall; Transporter
-
Improvements in Tolerance to Heat Stress in Rice via Molecular Mechanisms and Rice Varieties
作者:Liu, He;Wei, Yiting;Xie, Wei;Rao, Yuchun;Liu, He;Xia, Saisai;Xie, Wei;Ren, Deyong
关键词:rice; heat stress; molecular mechanism; breeding utilization
-
RBB1 negatively regulates rice disease resistance by modulating protein glycosylation
作者:Zhang, Bin;Guo, Mingliang;Liu, Xiangpei;Zhang, Bintao;Cui, Yan;Cao, Xinglan;Zhang, Zhipeng;Shi, Chuanlin;Wei, Hua;He, Huiying;Zhang, Hong;Zhu, Yiwang;Wang, Xianmeng;Lv, Yang;Yu, Xiaoman;Chen, Dandan;Yuan, Qiaoling;Sun, Tongjun;Qian, Qian;Shang, Lianguang;Zhang, Bin;Qian, Qian;Shang, Lianguang;Teng, Sheng;Qian, Qian;Shang, Lianguang
关键词:crop genetics; molecular biology; disease resistance; glycosylation modification