Temperature increase reduces global yields of major crops in four independent estimates

文献类型: 外文期刊

第一作者: Zhao, Chuang

作者: Zhao, Chuang;Piao, Shilong;Wang, Xuhui;Huang, Mengtian;Yao, Yitong;Liu, Qiang;Peng, Shushi;Wu, Donghai;Liu, Zhuo;Zhu, Zaichun;Liu, Bing;Zhu, Yan;Liu, Bing;Zhu, Yan;Liu, Bing;Zhu, Yan;Liu, Bing;Zhu, Yan;Liu, Bing;Asseng, Senthold;Piao, Shilong;Wang, Tao;Piao, Shilong;Wang, Tao;Lobell, David B.;Huang, Yao;Bassu, Simona;Ciais, Philippe;Durand, Jean-Louis;Elliott, Joshua;Elliott, Joshua;Ruane, Alex C.;Ewert, Frank;Ewert, Frank;Janssens, Ivan A.;Li, Tao;Lin, Erda;Martre, Pierre;Mueller, Christoph;Penuelas, Josep;Penuelas, Josep;Ruane, Alex C.;Wallach, Daniel

作者机构:

关键词: climate change impact;global food security;major food crops;temperature increase;yield

期刊名称:PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA ( 影响因子:11.205; 五年影响因子:12.291 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Wheat, rice, maize, and soybean provide two-thirds of human caloric intake. Assessing the impact of global temperature increase on production of these crops is therefore critical to maintaining global food supply, but different studies have yielded different results. Here, we investigated the impacts of temperature on yields of the four crops by compiling extensive published results from four analytical methods: global grid-based and local point-based models, statistical regressions, and field-warming experiments. Results from the different methods consistently showed negative temperature impacts on crop yield at the global scale, generally underpinned by similar impacts at country and site scales. Without CO2 fertilization, effective adaptation, and genetic improvement, each degree-Celsius increase in global mean temperature would, on average, reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1%. Results are highly heterogeneous across crops and geographical areas, with some positive impact estimates. Multi-method analyses improved the confidence in assessments of future climate impacts on global major crops and suggest crop-and region-specific adaptation strategies to ensure food security for an increasing world population.

分类号: N

  • 相关文献

[1]Phenological responses of spring wheat and maize to changes in crop management and rising temperatures from 1992 to 2013 across the Loess Plateau. Mo, Fei,Liu, Xue-Yan,Wang, Jian-Yong,Xiong, You-Cai,Mo, Fei,Ma, B. L.,Sun, Min,Zhang, Xu-Cheng.

[2]Calibration-induced uncertainty of the EPIC model to estimate climate change impact on global maize yield. Xiong, Wei,Yang, Di,Xiong, Wei,Porter, Cheryl H.,Jones, James W.,Skalsky, Rastislav,Balkovic, Juraj,Skalsky, Rastislav,Balkovic, Juraj. 2016

[3]Climate change impacts on crop yield and quality with CO2 fertilization in China. Lin, ED,Xiong, W,Ju, H,Xu, YL,Li, Y,Bai, LP,Xie, LY.

[4]A simplified pruning method for profitable cotton production in the Yellow River valley of China. Dai, Jianlong,Luo, Zhen,Li, Weijiang,Tang, Wei,Zhang, Dongmei,Lu, Hequan,Li, Zhenhuai,Xin, Chengsong,Kong, Xiangqiang,Eneji, A. Egrinya,Dong, Hezhong.

[5]The optimal leaf area index for cucumber photosynthesis and production in plastic greenhouse. Xiaolei, S,Zhifeng, W. 2004

[6]Effects of Soil Salinity and Plant Density on Yield and Leaf Senescence of Field-Grown Cotton. Zhang, H. J.,Dong, H. Z.,Li, W. J.,Zhang, D. M.,Zhang, H. J.. 2012

[7]Heterosis in yield, endotoxin expression and some physiological parameters in Bt transgenic cotton. Dong, H. Z.,Li, W. J.,Tang, W.,Li, Z. H.,Zhang, D. M.. 2007

[8]The Comparative Analysis of Spatial Structure of Ji Wheat 22 Yield Based on Different Stochastic Samplings. Yang, Yujian,Tong, Xueqin. 2012

[9]Effect of Chemical Fertilizer Dose on Yield, Quality and Nutrient Utilization Rate of Sweet Pepper in Organic Substrate. Lv Xiao-Hui,Yang Ning,Wang Ke-An. 2013

[10]Yield, quality and leaf senescence of cotton grown at varying planting dates and plant densities in the Yellow River Valley of China. Dong, HZ,Li, WJ,Tang, W,Li, ZH,Zhang, DM,Niu, YH. 2006

[11]Effects of plant density and nitrogen and potassium fertilization on cotton yield and uptake of major nutrients in two fields with varying fertility. Dong, Hezhong,Kong, Xiangqiang,Li, Weijiang,Tang, Wei,Zhang, Dongmei. 2010

[12]18-year grass hedge effect on soil water loss and soil productivity on sloping cropland. Yao, Li,Lin, ChaoWen,Wang, Xie,Xu, WenZhi,Wang, Hong,Liu, HaiTao. 2018

[13]Overexpression of an Apocynum venetum DEAD-Box Helicase Gene (AvDH1) in Cotton Confers Salinity Tolerance and Increases Yield in a Saline Field. Jie Chen,Sibao Wan,Huaihua Liu,Shuli Fan,Yujuan Zhang,Wei Wang,Minxuan Xia,Rui Yuan,Fenni Deng,Fafu Shen. 2016

[14]INTERCROPPING DIFFERENT VARIETIES OF RADISH CAN INCREASE CADMIUM ACCUMULATION IN RADISH. Liao, Ming'an,Mei, Luoyin,Liu, Qihua,Shi, Jun,Sun, Jinlong.

[15]Spatial distribution of light interception by different plant population densities and its relationship with yield. Huiyun Xue,Yingchun Han,Yabing Li,Guoping Wang,Lu Feng,Zhengyi Fan,Wenli Du,Beifang Yang,Cougui Cao,Shuchun Mao.

[16]Characterization of high-yield performance as affected by genotype and environment in rice. Chen, Song,Zeng, Fang-rong,Zhang, Guo-ping,Pao, Zong-zhi. 2008

[17]Yield Evaluation of Twenty-Eight Alfalfa Cultivars in Hebei Province of China. Zhang Tie-jun,Kang Jun-mei,Guo Wen-shan,Yang Qing-chuan,Zhao Zhong-xiang,Xu Yu-peng,Yan Xu-dong. 2014

[18]Dissection of component QTL expression in yield formation in rice. Guo, LB,Xing, YZ,Mei, HW,Xu, CG,Shi, CH,Wu, P,Luo, LJ. 2005

[19]Association of yield-related traits in founder genotypes and derivatives of common wheat (Triticum aestivum L.). Guo, Jie,Shi, Weiping,Zhang, Zheng,Sun, Daizhen,Yu, Jin,Li, Xinlei,Guo, Pingyi,Hao, Chenyang,Cheng, Jingye. 2018

[20]An Evaluation of Minimum Tillage in the Corn-wheat Cropping System in Hebei Province, China: Wheat productivity and water conservation. Yang, Xiaomei,Yin, Changbin,Li, Guichun,Chien, Hsiaoping,Nagumo, Fujio. 2016

作者其他论文 更多>>