Isolation and characterization of Bacillus altitudinis JSCX-1 as a new potential biocontrol agent against Phytophthora sojae in soybean [Glycine max (L.) Merr.]

文献类型: 外文期刊

第一作者: Lu, Xiaoxue

作者: Lu, Xiaoxue;Zhou, Dongmei;Chen, Xi;Zhang, Jinfeng;Huang, Huiwen;Wei, Lihui;Lu, Xiaoxue;Zhou, Dongmei;Chen, Xi;Zhang, Jinfeng;Huang, Huiwen;Wei, Lihui

作者机构:

关键词: Phytophthora sojae;Bacillus altitudinis;Biocontrol;Induced resistance;Salicylic acid signaling pathway

期刊名称:PLANT AND SOIL ( 影响因子:4.192; 五年影响因子:4.712 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Aims Phytophthora root and stem rot caused by the oomycete plant pathogen Phytophthora sojae (Kaufmann & Gerdemann), is a destructive disease of soybean [Glycine max (L.) Merr.]. There is no straightforward available method to control this disease. The present study aimed to isolate a biocontrol agent (BCA) to control Phytophthora rot and gain insights into the mechanisms of biocontrol activity.

分类号: S15

  • 相关文献

[1]Synergistic effect of Lentinula edodes and Pichia membranefaciens on inhibition of Penicillium expansum infections. Wang, Jie,Xia, Xiao-Ming,Li, Peng-Peng,Wang, Kai-Yun,Wang, Hong-Yan. 2013

[2]Main effects and interactions among acibenzolar-S-methyl, a biocontrol fungus and sunflower cultivar on control of Orobanche cumana Wallr.. Fan, Z.-W.,Buschmann, H.,Mueller-Stoever, D.,Sauerborn, J..

[3]Analysis of simple sequence repeats markers derived from Phytophthora sojae expressed sequencetags. Zhu, ZD,Huo, YL,Wang, XM,Huang, JB,Wu, XF. 2004

[4]Overexpression of GmERF5, a new member of the soybean EAR motif-containing ERF transcription factor, enhances resistance to Phytophthora sojae in soybean. Dong, Lidong,Cheng, Yingxin,Cheng, Qun,Li, Wenbin,Fan, Sujie,Jiang, Liangyu,Xu, Pengfei,Zhang, Shuzhen,Wu, Junjiang,Wu, Junjiang,Kong, Fanjiang,Xu, Zhaolong,Zhang, Dayong.

[5]Phenotypic evaluation and genetic dissection of resistance to Phytophthora sojae in the Chinese soybean mini core collection. Huang, Jing,Guo, Na,Sun, Jutao,Hu, Guanjun,Zhang, Haipeng,Zhang, Xing,Zhao, Jinming,Xing, Han,Li, Yinghui,Li, Yanfei,Qiu, Lijuan. 2016

[6]Fine Mapping and Identification of a Novel Phytophthora Root Rot Resistance Locus RpsZS18 on Chromosome 2 in Soybean. Zhong, Chao,Sun, Suli,Duan, Canxing,Zhu, Zhendong,Yao, Liangliang,Ding, Junjie. 2018

[7]Detached-petiole inoculation method to evaluate Phytophthora root rot resistance in soybean plants. Li, Yinping,Sun, Suli,Zhong, Chao,Zhu, Zhendong.

[8]Differentially Expressed Genes of Soybean During Infection by Phytophthora sojae. Xu Peng-fei,Li Wen-bin,Fan Su-jie,Li Ning-hui,Wang Xin,Jiang Liang-yu,Zhang Shu-zhen,Wu Jun-jiang,Wei Lai,Xue, Allen,Chen Wei-yuan,Lv Hui-ying,Lin Shi-feng. 2012

[9]GmWRKY31 and GmHDL56 Enhances Resistance to Phytophthora sojae by Regulating Defense-Related Gene Expression in Soybean. Fan, Sujie,Dong, Lidong,Han, Dan,Jiang, Liangyu,Cheng, Qun,Li, Rongpeng,Meng, Fanshan,Zhang, Shuzhen,Xu, Pengfei,Fan, Sujie,Jiang, Liangyu,Zhang, Feng,Wu, Junjiang,Lu, Wencheng. 2017

[10]A Novel Soybean ERF Transcription Factor, GmERF113, Increases Resistance to Phytophthora sojae Infection in Soybean. Zhao, Yuanling,Chang, Xin,Qi, Dongyue,Dong, Lidong,Fan, Sujie,Jiang, Liangyu,Cheng, Qun,Chen, Xi,Han, Dan,Xu, Pengfei,Zhang, Shuzhen,Zhao, Yuanling,Wang, Guangjin. 2017

[11]A Novel Soybean Dirigent Gene GmDIR22 Contributes to Promotion of Lignan Biosynthesis and Enhances Resistance to Phytophthora sojae. Li, Ninghui,Zhao, Ming,Liu, Tengfei,Dong, Lidong,Cheng, Qun,Wang, Le,Chen, Xi,Zhang, Chuanzhong,Xu, Pengfei,Zhang, Shuzhen,Li, Ninghui,Wu, Junjiang,Lu, Wencheng. 2017

[12]Genetic analysis of Phytophthora sojae populations in Fujian, China. Wu, M.,Li, B.,Liu, P.,Weng, Q.,Chen, Q.,Wu, M.,Zhan, J.,Chen, Q..

[13]Isolation and characterization of a pathogenesis-related protein 10 gene (GmPR10) with induced expression in soybean (Glycine max) during infection with Phytophthora sojae. Xu, Pengfei,Jiang, Liangyu,Li, Wenbin,Fan, Sujie,Zhang, Shuzhen,Wu, Junjiang,Wu, Junjiang.

[14]The histone acetyltransferase PsGcn5 mediates oxidative stress responses and is required for full virulence of Phytophthora sojae. Zhao, Wei,Wang, Tao,Liu, Shusen,Chen, Qingqing,Qi, Rende,Zhao, Wei,Wang, Tao,Qi, Rende.

[15]Inhibitory effect of sulfated lentinan and lentinan against tobacco mosaic virus (TMV) in tobacco seedlings. Wang, Jie,Xia, Xiao-Ming,Li, Peng-peng,Wang, Kai-Yun,Wang, Hong-Yan. 2013

[16]Inhibitory effect of esterified lactoferin and lactoferin against tobacco mosaic virus (TMV) in tobacco seedlings. Wang, Jie,Xia, Xiao-Ming,Li, Peng-peng,Wang, Kai-Yun,Wang, Hong-Yan. 2013

[17]Dry mycelium of Penicillium chrysogenum protects cotton plants against wilt diseases and increases yield under field conditions. Dong, HZ,Zhang, XK,Choen, Y,Zhou, Y,Li, WJ,Li, ZH. 2006

[18]Inhibitory effects of esterified whey protein fractions by inducing chemical defense against tobacco mosaic virus (TMV) in tobacco seedlings. Wang, Jie,Zhu, Yu-Kun,Zhang, Huan,Wang, Kai-Yun,Wang, Hong-Yan. 2012

[19]Differential expression of induced resistance by an aqueous extract of killed Penicillium chrysogenum against Verticillium wilt of cotton. Dong, HZ,Li, WJ,Zhang, DM,Tang, W. 2003

[20]Use of Lentinan To Control Sharp Eyespot of Wheat, and the Mechanism Involved. Zhang, Zhongxiao,Wang, Hongyan,Wang, Kaiyun,Jiang, Lili,Wang, Dong,Jiang, Lili,Wang, Hongyan. 2017

作者其他论文 更多>>