Effects of root restriction on nitrogen and gene expression levels in nitrogen metabolism in Jumeigui grapevines (Vitis vinifera L.xVitis labrusca L)

文献类型: 外文期刊

第一作者: Li Jie-fa

作者: Li Jie-fa;Wang Bo;Wang Lei;Zhang Cai-xi;Xu Wen-ping;Wang Shi-ping;Zhu Li-na;Bai Yang

作者机构:

关键词: root restriction;grapevine;gene expression;nitrogen metabolism

期刊名称:Journal of Integrative Agriculture ( 影响因子:2.848; 五年影响因子:2.979 )

ISSN: 2095-3119

年卷期: 2015 年 14 卷 1 期

页码:

收录情况: SCI

摘要: To decipher the relationship between the inhibited shoot growth and expression pattern of key enzymes in nitrogen metabolism under root restriction, the effects of root restriction on diurnal variation of expression of nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS1-1, GS1-2, GS2) and glutamate synthase (Fd-GOGAT, NADH-GOGAT) genes and nitrogen levels were evaluated in two-year-old Jumeigui grapevines (Vitis vinifera L.xVitislabrusca L.) when significant differences in shoot growth were observed between treatments at expansion stage (22 days after anthesis). Grapevines were planted in root-restricting pits as root restriction and in an unrestricted field as the control. Results showed that root restriction significantly reduced shoot growth, but promoted the growth of white roots and fibrous brown roots and improved the fruit quality. (NO3-+NO2-)-N concentration in all plant parts, NH4+-N concentration in white roots and total N concentration in leaves and brown roots were significantly reduced under root restriction. Gene expression analysis revealed that mRNA levels of genes related to the GS1/NADH-GOGAT pathway were lower in root-restricted than in control petioles, whereas genes involved in the GS2/Fd-GOGAT pathway were up-regulated under root restriction. Root restriction also resulted in down-regulation of genes involved in nitrogen metabolism in leaves, especially at 10:00, while transcript levels of all these genes were enhanced in root-restricted white and brown roots at most time points. This organ-dependent response contributed to the alteration in NO3- reduction and NH4+ assimilation under root restriction, leading to less NO3- transported from roots and then assimilated in root-restricted leaves. Therefore, this study implied that shoot growth inhibition in grapevines under root restriction is closely associated with down-regulation of gene expression in nitrogen metabolism in leaves.

分类号:

  • 相关文献

[1]Effect of root restriction on nitrogen levels and glutamine synthetase activity in 'Kyoho' grapevines. Yu, Xiuming,Wang, Bo,Zhang, Caixi,Xu, Wenping,He, Jianjun,Wang, Shiping,Zhu, Lina. 2012

[2]Root restriction affected anthocyanin composition and up-regulated the transcription of their biosynthetic genes during berry development in 'Summer Black' grape. He, Jianjun,Yu, Xiuming,Li, Jiefa,Zhang, Caixi,Xu, Wenping,Wang, Shiping,Bai, Yang,Bai, Xianjin,Cao, Xiongjun. 2013

[3]Effects of the fungal endophyte Phomopsis liquidambari on nitrogen uptake and metabolism in rice. Yang, Bo,Wang, Xiao-Mi,Ma, Hai-Yan,Jia, Yong,Dai, Chuan-Chao,Li, Xia.

[4]Isolation, cloning, and expression of five genes related to nitrogen metabolism in peach (Prunus persica L. Batsch). Zhang, C. H.,Zhang, B. B.,Yu, M. L.,Ma, R. J.,Song, Z. Z.,Korir, N. K..

[5]Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L.). Wang, Huan,Shi, Decheng,Liu, Bao,Yang, Chunwu,Zhang, Meishan,Guo, Rui,Lin, Xiuyun. 2012

[6]Comparative Transcriptomic Analysis of Grape Berry in Response to Root Restriction during Developmental Stages. Leng, Feng,Lin, Qiong,Wu, Di,Sun, Chongde,Lin, Qiong,Wang, Shiping,Wang, Dengliang.

[7]Effects of root restriction on the ultrastructure of phloem in grape leaves. Xie, ZhaoSen,Wang, Bo,Xu, WenPing,Wang, ShiPing,Xie, ZhaoSen,Cao, Hongmei,Li, Bo,Forney, Charles F.. 2011

[8]Root restriction affects anthocyanin accumulation and composition in berry skin of 'Kyoho' grape (Vitis vinifera L. x Vitis labrusca L.) during ripening. Wang, Bo,He, Jianjun,Yu, Xiuming,Zhu, Lina,Xie, Zhaosen,Zhang, Caixi,Xu, Wenping,Wang, Shiping,Duan, Changqing,Zhu, Lina,Xie, Zhaosen. 2012

[9]Nitrate uptake kinetics of grapevine under root restriction. Yang, Tianyi,Zhu, Lina,Wang, Shiping,Gu, Weijun,Huang, Danfeng,Xu, Wenping,Jiang, Aili,Li, Shicheng. 2007

[10]Root restriction-induced limitation to photosynthesis in tomato (Lycopersicon esculentum Mill.) leaves. Shi, Kai,Ding, Xiao-Tao,Zhou, Yan-Hong,Yu, Jing-Quan,Yu, Jing-Quan,Dong, De-Kun. 2008

[11]Transcriptomic Analyses of Ascorbic Acid and Carotenoid Metabolites Influenced by Root Restriction during Grape Berry Development and Ripening. Leng, Feng,Tang, Dandan,Lin, Qiong,Cao, Jinping,Wu, Di,Sun, Chongde,Lin, Qiong,Wang, Shiping,Cao, Jinping.

[12]Planting density and leaf-square regulation affected square size and number contributing to altered insecticidal protein content in Bt cotton. Yuan Chen,Chen, Dehua,Yabing Li,Yuan Chen,Eltayib H.M.A. Abidallha,Dapeng Hu,Yuan Li,Xiang Zhang,Dehua Chen.

[13]Nitrogen (N) Application Gradually Enhances Boll Development and Decreases Boll Shell Insecticidal Protein Content in N-Deficient Cotton. Yuan Chen,Chen, Dehua,Yabing Li,Mingyuan Zhou,Qiuzhi Rui,Zezhou Cai,Xiang Zhang,Yuan Chen,Dehua Chen. 2018

[14]Rearrangement of nitrogen metabolism in rice (Oryza sativa L.) under salt stress. Xu, Jianwen,Huang, Xi,Lan, Hongxia,Zhang, Hongsheng,Huang, Ji,Xu, Jianwen.

[15]Effects of 5-aminolevulinic acid on nitrogen metabolism and ion distribution of watermelon seedlings under salt stress. Chen, G.,Fan, P. S.,Feng, W. M.,Guan, A. Q.,Lu, Y. Y.,Wan, Y. L..

[16]Arabidopsis plastidial folylpolyglutamate synthetase is required for nitrogen metabolism under nitrate-limited condition in darkness. Meng, Hongyan,Xu, Bosi,Zhang, Chunyi,Jiang, Ling,Zhang, Chunyi,Jiang, Ling.

[17]ES7, encoding a ferredoxin-dependent glutamate synthase, functions in nitrogen metabolism and impacts leaf senescence in rice. Bi, Zhenzhen,Zhang, Yingxin,Wu, Weixun,Zhan, Xiaodeng,Yu, Ning,Xu, Tingting,Liu, Qunen,Li, Zhi,Shen, Xihong,Chen, Daibo,Cheng, Shihua,Cao, Liyong,Bi, Zhenzhen,Zhang, Yingxin,Wu, Weixun,Zhan, Xiaodeng,Yu, Ning,Xu, Tingting,Liu, Qunen,Li, Zhi,Shen, Xihong,Chen, Daibo,Cheng, Shihua,Cao, Liyong.

[18]Improvement of nitrogen accumulation and metabolism in rice (Oryza sativa L.) by the endophyte Phomopsis liquidambari. Yang, Bo,Ma, Hai-Yan,Wang, Xiao-Mi,Jia, Yong,Hu, Jing,Dai, Chuan-Chao,Li, Xia.

[19]Growth performance and nitrogen metabolism in weaned pigs fed diets containing different sources of starch. Li, T. J.,Huang, R. L.,Wu, G. Y.,Lin, Y. C.,Jiang, Z. Y.,Kong, X. F.,Chu, W. Y.,Zhang, Y. M.,Kang, P.,Hou, Z. P.,Fan, M. Z.,Liao, Y. P.,Yin, Y. L.. 2007

[20]Calcium involved in the poly(gamma-glutamic acid)-mediated promotion of Chinese cabbage nitrogen metabolism. Xu, Zongqi,Lei, Peng,Feng, Xiaohai,Liang, Jinfeng,Chi, Bo,Xu, Hong,Xu, Zongqi,Lei, Peng,Feng, Xiaohai,Liang, Jinfeng,Chi, Bo,Xu, Hong,Xu, Xianju,Feng, Xiaohai,Liang, Jinfeng,Chi, Bo,Xu, Hong. 2014

作者其他论文 更多>>