Apigenin accumulation and expression analysis of apigenin biosynthesis relative genes in celery

文献类型: 外文期刊

第一作者: Yan, Jun

作者: Yan, Jun;Yu, Li;Xu, Shuang;Gu, Weihong;Zhu, Weimin

作者机构:

关键词: Apigenin biosynthesis;Celery;Leaf;Gene expression

期刊名称:SCIENTIA HORTICULTURAE ( 影响因子:3.463; 五年影响因子:3.672 )

ISSN: 0304-4238

年卷期: 2014 年 165 卷

页码:

收录情况: SCI

摘要: Apigenin, a naturally occurring plant flavone, abundantly present in common fruits and vegetables, is recognized as a bioactive flavonoid shown to possess anti-inflammatory, antioxidant, and anticancer properties. Apigenin content in different tissues and during leaf development was analyzed in celery cv. Shanghai yellow heart and cv. Ventura. Apigenin mainly accumulated in leaf and flower, and Shanghai yellow heart accumulated more apigenin than Ventura. The apigenin content increased rapidly in the middle stage of leaf development (Shanghai yellow heart: from stage 3 to stage 5, Ventura: stage 4). In addition, the cDNA library was constructed using stage 4 Shanghai yellow heart leaves, and 9266 cDNA clones were selected. The clones with high homology to chalcone synthase (CHS), chalcone isomerise (CHI), flavanone 3 beta-hydroxylase (F3H), flavonoid 3 '-hydroxylase (F3 ' H), flavone synthase I (FSI), which are all involved in apigenin biosynthesis, were used for gene expression analysis quantitative real-time PCR to elucidate the molecular mechanism of apigenin biosynthesis in celery. These genes exhibited maximum transcript levels before the apigenin content reached its maximum in both Shanghai yellow heart and Ventura leaves. The results indicated that the expressions of CHS and CHI are involved in apigenin biosynthesis, but not exclusively. FSI expression was specifically associated with apigenin biosynthesis. There was no correlation between apigenin accumulation and the expression of F3H or F3 ' H. These results not only revealed the distribution of apigenin but also helped to elucidate the regulation mechanism of apigenin biosynthesis in celery. (C) 2013 Elsevier B.V. All rights reserved.

分类号:

  • 相关文献

[1]Cadmium Accumulation in soil and Celery from a Long-Term Manure Applied Field Experiment. Sun, Qinping,Li, Jijin,Liu, Bensheng,Gao, Lijuan,Xu, Junxiang,Zou, Guoyuan,Liu, Baocun. 2013

[2]Risk assessment of pesticide residues in dietary intake of celery in China. Fang, Liping,Zhang, Shuqiu,Chen, Zilei,Du, Hongxia,Zhu, Qian,Dong, Zhan,Li, Huidong,Fang, Liping,Zhang, Shuqiu,Chen, Zilei,Du, Hongxia,Zhu, Qian,Dong, Zhan,Li, Huidong. 2015

[3]The influence of coated urea on yield and quality of vegetable crops and nitrogen balance in calcareous Chao soil. Xiong, Yousheng,Yuan, Jiafu,Hu, Ronggui. 2010

[4]Phenolic Composition and Antioxidant Activities of 11 Celery Cultivars. Yao, Yang,Sang, Wei,Ren, Guixing,Zhou, Mengjie. 2010

[5]Effect of thermal treatment on phenolic composition and antioxidant activities of two celery cultivars. Yao, Yang,Ren, Guixing. 2011

[6]Dispersive Liquid-Liquid Microextraction Combined with Gas Chromatography-Mass Spectrometry for the Determination of Multiple Pesticides in Celery. Wei, Haifeng,Liu, Deyun,Xia, Gaofeng,Yang, Xiaoyun,Miao, Xuexue.

[7]Label-free quantitative proteomics analysis of cotton leaf response to nitric oxide. Yanyan Meng,Feng Liu,Chaoyou Pang,Shuli Fan,Meizhen Song,Dan Wang,Weihua Li,Shuxun Yu.

[8]Volatile constituents of the leaves and flowers of Salvia przewalskii Maxim. from Tibet. Liu, JM,Nan, P,Tsering, Q,Tsering, T,Bai, ZK,Wang, L,Liu, ZJ,Zhong, Y. 2006

[9]RESEARCH VERTICAL DISTRIBUTION OF CHLOROPHYLL CONTENT OF WHEAT LEAVES USING IMAGING HYPERSPECTRA. Zhang, Dongyan,Wang, Xiu,Ma, Wei,Zhao, Chunjiang,Zhang, Dongyan. 2012

[10]Effects of root restriction on the ultrastructure of phloem in grape leaves. Xie, ZhaoSen,Wang, Bo,Xu, WenPing,Wang, ShiPing,Xie, ZhaoSen,Cao, Hongmei,Li, Bo,Forney, Charles F.. 2011

[11]Allelopathic effects of allelochemicals of Ginkgo biloba leaf on fusarium wilt (Fusarium oxysporum) of hot pepper. Hou, Y. X.,Song, X. Y.,Yin, Y. L.,Li, Y. S.,Yang, J. S.,Zheng, J. Y.,Yin, Y. L.. 2016

[12]HYPERSPECTRAL IMAGE FOR DISCRIMINATING APHID AND APHID DAMAGE REGION OF WINTER WHEAT LEAF. Luo Juhua,Huang Wenjiang,Guan Qingsong,Zhao Jinling,Zhang Jingcheng. 2013

[13]Monitoring Leaf Chlorophyll Fluorescence with Spectral Reflectance in Rice (Oryza sativa L.). Zhang, Hao,Zhu, Lian-feng,Jin, Qian-yu,Zhang, Hao,Hu, Hao,Zheng, Ke-feng. 2011

[14]Identification of differentially expressed genes in sunflower (Helianthus annuus) leaves and roots under drought stress by RNA sequencing. Liang, Chunbo,Huang, Xutang,Liang, Chunbo,Wang, Wenjun,Wang, Jing,Ma, Jun,Li, Cen,Zhou, Fei,Zhang, Shuquan,Yu, Ying,Zhang, Liguo,Huang, Xutang,Li, Weizhong. 2017

[15]Quantitative trait locus analysis of drought tolerance and yield in maize in China. Xiao, YN,Li, XH,George, ML,Li, MS,Zhang, SH,Zheng, YL.

[16]Genomic organization and expression analysis of a farnesyl diphosphate synthase gene (FPPS2) in apples (Malus domestica Borkh.). Yuan, Kejun,Wang, Changjun,Xin, Li,Zhang, Anning,Ai, Chengxiang.

[17]Morphological Diversity in Native Apricot Germplasm Resources of China and Grading Standards for the Foliar and Fruit Traits. Sun Haoyuan,Zhang Junhuan,Wang Yuzhu,Jiang Fengchao. 2011

[18]Overexpression of ACL1 (abaxially curled leaf 1) Increased Bulliform Cells and Induced Abaxial Curling of Leaf Blades in Rice. Li, Ling,Shi, Zhen-Ying,Li, Lin,An, Lin-Sheng,Zhang, Jing-Liu,Li, Ling,Shen, Ge-Zhi,Wang, Xin-Qi. 2010

[19]Variation in leaf anatomical traits from tropical to cold-temperate forests and linkage to ecosystem functions. He, Nianpeng,Liu, Congcong,Tian, Miao,Li, Meiling,Yang, Hao,Yu, Guirui,Guo, Dali,He, Nianpeng,Smith, Melinda D.,Smith, Melinda D.,Yu, Qiang,Hou, Jihua. 2018

[20]Comparative Analysis of the Brassica napus Root and Leaf Transcript Profiling in Response to Drought Stress. Liu, Chunqing,Zhang, Ka,An, Hong,Hu, Kaining,Wen, Jing,Shen, Jinxiong,Ma, Chaozhi,Yi, Bin,Tu, Jinxing,Fu, Tingdong,Zhang, Xuekun. 2015

作者其他论文 更多>>