Phytoremediation of triphenylmethane dyes by overexpressing a Citrobacter sp triphenylmethane reductase in transgenic Arabidopsis

文献类型: 外文期刊

第一作者: Fu, Xiao-Yan

作者: Fu, Xiao-Yan;Zhao, Wei;Xiong, Ai-Sheng;Tian, Yong-Sheng;Zhu, Bo;Peng, Ri-He;Yao, Quan-Hong

作者机构:

关键词: Phytoremediation;Citrobacter sp.;Triphenylmethane reductase;Triphenylmethane dyes;Transgenic Arabidopsis

期刊名称:APPLIED MICROBIOLOGY AND BIOTECHNOLOGY ( 影响因子:4.813; 五年影响因子:4.697 )

ISSN: 0175-7598

年卷期: 2013 年 97 卷 4 期

页码:

收录情况: SCI

摘要: Triphenylmethane dyes are extensively utilized in textile industries, medicinal products, biological stains, and food processing industries, etc. They are generally considered as xenobiotic compounds, which are very recalcitrant to biodegradation. The widespread persistence of such compounds has generated concerns with regard to remediation of them because of their potential carcinogenicity, teratogenicity, and mutagenicity. In this study, we present a system of phytoremediation by Arabidopsis plants developed on the basis of overexpression of triphenylmethane reductase (TMR) from the Citrobacter sp. The morphology and growth of TMR transgenic Arabidopsis plants showed significantly enhanced tolerances to crystal violet (CV) and malachite green (MG). Further, HPLC and HPLC-MS analyses of samples before and after dye decolorization in culture media revealed that TMR transgenic plants exhibited strikingly higher capabilities of removing CV from their media and high efficiencies of converting CV to non-toxic leucocrystal violet (LCV). This work indicates that microbial degradative gene may be transgenically exploited in plants for bioremediation of triphenylmethane dyes in the environment.

分类号:

  • 相关文献

[1]Phytoremediation of 2,4,6-trinitrotoluene by Arabidopsis plants expressing a NAD(P)H-flavin nitroreductase from Enterobacter cloacae. You, Shuang-Hong,Zhu, Bo,Han, Hong-Juan,Wang, Bo,Peng, Ri-He,Yao, Quan-Hong.

[2]Enhancement of naphthalene tolerance in transgenic Arabidopsis plants overexpressing the ferredoxin-like protein (ADI1) from rice. Fu, Xiao-Yan,Zhu, Bo,Han, Hong-Juan,Zhao, Wei,Tian, Yong-Sheng,Peng, Ri-He,Yao, Quan-Hong.

[3]Metabolic engineering of Arabidopsis for remediation of different polycyclic aromatic hydrocarbons using a hybrid bacterial dioxygenase complex. Peng, Rihe,Fu, Xiaoyan,Tian, Yongsheng,Zhao, Wei,Zhu, Bo,Xu, Jing,Wang, Bo,Wang, Lijuan,Yao, Quanhong.

[4]Over-expression of ZmPti1, a homologue to Pti1, increases salt tolerance of Arabidopsis thaliana. Zou, Huawen,Wu, Zhongyi,Zhang, Xiuhai,Wang, Yongqin,Huang, Conglin,Zou, Huawen. 2010

[5]Overexpression of a new Cys(2)/His(2) zinc finger protein ZmZF1 from maize confers salt and drought tolerance in transgenic Arabidopsis. Huai, Junling,Zheng, Jun,Wang, Guoying,Huai, Junling. 2009

[6]Bioinformatic Analyses of Subgroup-A Members of the Wheat bZIP Transcription Factor Family and Functional Identification of TabZIP174 Involved in Drought Stress Response. Li, Xueyin,Ma, Lingjian,Feng, Biane,Zhang, Fengjie,Tang, Yimiao,Zhang, Liping,Zhao, Changping,Gao, Shiqing,Feng, Biane,Zhang, Fengjie. 2016

[7]Overexpression of the maize E3 ubiquitin ligase gene ZmAIRP4 enhances drought stress tolerance in Arabidopsis. Yang, Junpin,Tan, Jun,Yang, Liang,Chang, Wei,Li, Zhi,Miao, Mingjun,Li, Yuejian,Yang, Liang,Chang, Wei,Li, Zhi,Miao, Mingjun,Li, Yuejian,Wu, Lintao,Liu, Zhibin. 2018

[8]Isolation and drought-tolerant function analysis of ZmPti1-1, a homologue to Pti1, from maize (Zea mays L.). Li, Zhiliang,Bian, Mingdi,Wu, Zhongyi,Zhang, Xiuhai,Huang, Conglin,Li, Zhiliang,Yang, Qing,Li, Zhiliang. 2011

[9]Transgenic expression of a sorghum gene (SbLRR2) encoding a simple extracellular leucine-rich protein enhances resistance against necrotrophic pathogens in Arabidopsis. Zhu, Fu-Yuan,Lo, Clive,Zhu, Fu-Yuan,Zhang, Jianhua,Zhu, Fu-Yuan,Zhang, Jianhua,Li, Lei.

[10]Molecular cloning and functional analysis of the drought tolerance gene MsHSP70 from alfalfa (Medicago sativa L.). Li, Zhenyi,Long, Ruicai,Zhang, Tiejun,Wang, Zhen,Zhang, Fan,Yang, Qingchuan,Kang, Junmei,Sun, Yan.

[11]Molecular cloning and characterization of the promoter for the multiple stress-inducible gene BjCHI1 from Brassica juncea. Wu, Xue-Feng,Wang, Chun-Lian,Xie, En-Bei,Gao, Ying,Fan, Ying-Lun,Zhao, Kai-Jun,Wu, Xue-Feng,Liu, Pi-Qing.

[12]Tomato SlDREB1 gene conferred the transcriptional activation of drought-induced gene and an enhanced tolerance of the transgenic Arabidopsis to drought stress. Jiang, Linlin,Cheng, Xianguo,Jiang, Linlin,Wang, Yingbo,Li, Wei,Cheng, Xianguo,Jiang, Linlin,Wang, Yingbo,Li, Wei,Cheng, Xianguo,Zhang, Shuhui,He, Rui,Han, Jiao.

[13]Identification of a novel bZIP transcription factor in Camellia sinensis as a negative regulator of freezing tolerance in transgenic arabidopsis. Wang, Lu,Cao, Hongli,Qian, Wenjun,Yao, Lina,Hao, Xinyuan,Li, Nana,Yang, Yajun,Wang, Xinchao,Wang, Lu,Hao, Xinyuan,Yang, Yajun,Wang, Xinchao,Qian, Wenjun.

[14]Functional identification of apple MdJAZ2 in Arabidopsis with reduced JA-sensitivity and increased stress tolerance. An, Xiu-Hong,Li, En-Mao,Xu, Kai,Cheng, Cun-Gang,Hao, Yu-Jin.

[15]Isolation and Characterization of Ftsz Genes in Cassava. Geng, Meng-Ting,Yao, Yuan,Li, Rui-Mei,Fu, Shao-Ping,Duan, Rui-Jun,Liu, Jiao,Guo, Jian-Chun,Geng, Meng-Ting,Min, Yi,Chen, Xia,Fan, Jie,Yuan, Shuai,Wang, Lei,Zhang, Fan,Shang, Lu,Wang, Yun-Lin,Hu, Xin-Wen,Sun, Chong. 2017

[16]High level resistance to Turnip mosaic virus in Chinese cabbage (Brassica campestris ssp pekinensis (Lour) Olsson) transformed with the antisense NIb gene using marker-free Agrobacterium tumefaciens infiltration. Yu Zhandong,Zhao Shuangyi,He Qiwei.

[17]Maize ZmRAV1 contributes to salt and osmotic stress tolerance in transgenic arabidopsis. Min, Haowei,Wang, Jianhua,Zheng, Jun. 2014

[18]Molecular cloning and characterization of a gene regulating flowering time from Alfalfa (Medicago sativa L.). Zhang, Tiejun,Chao, Yuehui,Kang, Junmei,Ding, Wang,Yang, Qingchuan.

[19]Inducible and constitutive expression of an elicitor gene Hrip1 from Alternaria tenuissima enhances stress tolerance in Arabidopsis. Qiu, De-Wen,Zeng, Hong-Mei,Guo, Li-Hua,Yang, Xiu-Fen,Liu, Zheng.

[20]Functional Characterization of aroA from Rhizobium leguminosarum with Significant Glyphosate Tolerance in Transgenic Arabidopsis. Han, Jing,Tian, Yong-Sheng,Xu, Jing,Wang, Li-Juan,Wang, Bo,Peng, Ri-He,Yao, Quan-Hong.

作者其他论文 更多>>