Isolation and characterization of an AP2/ERF-RAV transcription factor BnaRAV-1-HY15 in Brassica napus L. HuYou15

文献类型: 外文期刊

第一作者: Zhuang, Jing

作者: Zhuang, Jing;Sun, Chao-Cai;Zhou, Xi-Rong;Zhuang, Jing;Zhang, Jian;Xiong, Ai-Sheng

作者机构:

关键词: Transcription factor;AP2 family;BnaRAV-1-HY15;Abiotic stresses;Brassica napus L.;HuYou15

期刊名称:MOLECULAR BIOLOGY REPORTS ( 影响因子:2.316; 五年影响因子:2.357 )

ISSN: 0301-4851

年卷期: 2011 年 38 卷 6 期

页码:

收录情况: SCI

摘要: Transcriptional regulation is thought to be important for stress tolerance and response of transcription factors. RAV subfamily transcription factor contains an AP2- and B3-DNA binding domain, which belongs to the AP2/ERF family. It encodes transcriptional regulators with a variety of functions involved in the developmental and physiological processes in plants. Here, a RAV-like gene, BnaRAV-1-HY15, was isolated from Brassica napus L. cv HuYou15. Sequence homology analysis revealed that the BnaRAV-1-HY15 factor belongs to the RAV subfamily of the AP2/ERF family, and it shares high identity with the AtRAV2 of Arabidopsis. Sequence and three-dimensional structural analyses revealed that BnaRAV-1-HY15 contains two distinct DNA-binding domains, one AP2 domain together with one B3 domain. The AP2 domain composed of 54 amino acids and present in N-terminal region. In addition to AP2 domain, 117 amino acids show significant sequence similarity to the B3 domain present in C-terminal region. Semi-quantitative RT-PCR analysis indicated that the BnaRAV-1-HY15 gene is induced by cold, NaCl and PEG treatments. Under ABA stress, the expression of BnaRAV-1-HY15 gene was not detected. The gene expression was also not traceable from the tissues of pod, bud, petal, leaf, stem and root of normally grown B. napus L. HuYou15 plant at the period of flowering and seed development.

分类号:

  • 相关文献

[1]Protein-DNA interactions in the promoter region of the gene encoding diapause hormone and pheromone biosynthesis activating neuropeptide of the cotton bollworm, Helicoverpa armigera. Hong, B,Zhang, ZF,Tang, SM,Yi, YZ,Zhang, TY,Xu, WH.

[2]Molecular cloning and functional analysis of NAC family genes associated with leaf senescence and stresses in Gossypium hirsutum L.. Shah, Syed Tariq,Pang, Chaoyou,Hussain, Anwar,Fan, Shuli,Song, Meizhen,Zamir, Roshan,Yu, Shuxun. 2014

[3]Abiotic Stresses and Phytohormones Regulate Expression of FAD2 Gene in Arabidopsis thaliana. Yuan Si-wei,Wu Xue-long,Liu Zhi-hong,Huang Rui-zhi,Yuan Si-wei,Luo Hong-bing. 2012

[4]The E-Subgroup Pentatricopeptide Repeat Protein Family in Arabidopsis thaliana and Confirmation of the Responsiveness PPR96 to Abiotic Stresses. Liu, Jia-Ming,Zhao, Juan-Ying,Guo, Chang-Hong,Liu, Jia-Ming,Zhao, Juan-Ying,Lu, Pan-Pan,Chen, Ming,Xu, Zhao-Shi,Ma, You-Zhi. 2016

[5]Characterization and Expression Analysis of Four Glycine-Rich RNA-Binding Proteins Involved in Osmotic Response in Tobacco (Nicotiana tabacum cv. Xanthi). Zeng Qian-chun,Chen Xuan,Lu Xiu-ping,Li Wen-zheng,Yu Di-qiu. 2010

[6]Selection of reference genes for quantitative real-time PCR in Cocos nucifera during abiotic stress. Xia, Wei,Liu, Zheng,Yang, Yaodong,Xiao, Yong,Zhao, Songlin,Mason, Annaliese S.,Mason, Annaliese S.,Ma, Zilong. 2014

[7]Characterization and expression analysis of a novel RING-HC gene, ZmRHCP1, involved in brace root development and abiotic stress responses in maize. Li Wen-lan,Sun Qi,Li Wen-cai,Yu Yan-li,Zhao Meng,Meng Zhao-dong. 2017

[8]Genome-wide identification and expression analysis of CILAX, CIPIN and CIABCB genes families in Citrullus lanatus under various abiotic stresses and grafting. Yu, Chenliang,Dong, Wenqi,Li, Zhimiao,Zhang, Chenghao,Zhan, Yihua,Huang, Zong-an,Kim, Il Seop. 2017

[9]Functional characterization of germin and germin-like protein genes in various plant species using transgenic approaches. Ilyas, Muhammad,Rasheed, Awais,Mahmood, Tariq,Rasheed, Awais.

[10]Exogenous Application of Abscisic Acid, Putrescine, or 2,4-Epibrassinolide at Appropriate Concentrations Effectively Alleviate Damage to Tomato Seedlings from Suboptimal Temperature Stress. Jiang, Weijie,Bai, Jie,Yang, Xueyong,Yu, Hongjun,Liu, Yanpeng.

[11]Systematic discovery and characterization of stress-related microRNA genes in Oryza sativa. Xie, Kai Bin,Zhou, Xue,Zhang, Tian Hai,Chen, Guo Xiang,Zhou, Xue,Zhang, Bao Long,Chen, Li Ming.

[12]Identification and Expression Profiling of the Auxin Response Factors in Capsicum annuum L. under Abiotic Stress and Hormone Treatments. Yu, Chenliang,Zhan, Yihua,Sun, Chendong,Feng, Xuping,Huang, Zong-An. 2017

[13]Cloning of a new glutathione peroxidase gene from tea plant (Camellia sinensis) and expression analysis under biotic and abiotic stresses. Fu, Jian-Yu. 2014

[14]Identification of the AQP members involved in abiotic stress responses from Arabidopsis. Feng, Zhi-Juan,Xu, Sheng-Chun,Liu, Na,Zhang, Gu-Wen,Hu, Qi-Zan,Gong, Ya-Ming,Xu, Zhao-Shi. 2018

[15]Overexpression of a wheat MYB transcription factor gene, TaMYB56-B, enhances tolerances to freezing and salt stresses in transgenic Arabidopsis. Zhang, Lichao,Zhao, Guangyao,Xia, Chuan,Jia, Jizeng,Liu, Xu,Kong, Xiuying.

[16]Genome-wide identification and expression analysis of the CaLAX and CaPIN gene families in pepper (Capsicum annuum L.) under various abiotic stresses and hormone treatments. Zhang, Chenghao,Dong, Wenqi,Yu, Chenliang,Huang, Zong-an,Cho, MyeongCheoul,Yu, Qingcang,Wu, Chuanyu. 2018

[17]Foci of Future Studies on Abiotic Stress Tolerance of Maize in the Era of Post-Genomics. Li You-zhi,Fan Xian-wei,Liao Jiang-xiong. 2012

[18]The auxin response factor gene family in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress. Hu, Wei,Zuo, Jiao,Hou, Xiaowan,Yan, Yan,Wei, Yunxie,Liu, Juhua,Li, Meiying,Xu, Biyu,Jin, Zhiqiang,Jin, Zhiqiang. 2015

[19]Identification and Characterization of the Glucose-6-Phosphate Dehydrogenase Gene Family in the Para Rubber Tree, Hevea brasiliensis. Long, Xiangyu,He, Bin,Fang, Yongjun,Tang, Chaorong. 2016

[20]Isolation, characterization and expression analysis of the GDP dissociation inhibitor protein gene MiRab-GDI from Mangifera indica L. Liu, Zhaoliang,Luo, Cong,Li, Lishu,Doug, Long,Can, Vantoan,Wei, Pengxiao,He, Xinhua,He, Xinhua,Liu, Zhaoliang.

作者其他论文 更多>>