Attenuation of salt-induced changes in photosynthesis by exogenous nitric oxide in tomato (Lycopersicon esculentum Mill. L.) seedlings

文献类型: 外文期刊

第一作者: Wu, Xue-Xia

作者: Wu, Xue-Xia;Ding, Hai-Dong;Zhu, Wei-Min;Chen, Jian-Lin;Zhu, Wei-Min;Zhang, Hong-Juan

作者机构:

关键词: Nitric oxide;photosynthesis;salt stress;Lycopersicon esculentum L.;stomatal conductance;transpiration rate

期刊名称:AFRICAN JOURNAL OF BIOTECHNOLOGY ( 影响因子:0.573; 五年影响因子:0.794 )

ISSN: 1684-5315

年卷期: 2010 年 9 卷 46 期

页码:

收录情况: SCI

摘要: Exogenous sodium nitroprusside (SNP), a NO donor, was applied in this study to investigate the potential role of NO in photosynthetic performance of tomato (Lycopersicon esculentum L. cv. Hufan2560) seedlings under salt-stressed conditions. Exogenous NO alleviated the decrease in dry mass of shoot and root caused by salt stress. In parallel, NO application in salt-stressed plants attenuated the decrease in the photosynthetic parameters such as leaf chlorophyll, net photosynthetic rate (P(N)), stomatal conductance (gs), transpiration rate (E), the ratio of variable to maximum fluorescence (Fv/Fm), electron transport rate (ETR), the efficiency of excitation energy capture by open photosystem II (PSII) reaction centers (Fv'/Fm'), and the photochemical quenching coefficient (qP), and counteracted the increase in on-photochemical quenching coefficient (qN). Furthermore, the changes as mentioned above reversed by NO treatment are specific to salt stress since application of NO alone to tomato seedlings without salt stress had slight effects on the tested parameters. The results obtained here demonstrated that the photosynthetic performance was improved by NO application in salt-stressed plants and such an improvement was associated with an enhancement of gas-exchange and the actual PSII efficiency, which revealed an important role of NO in enhancing resistance of plants to salt stress.

分类号:

  • 相关文献

[1]Effects of chilling and high temperatures on photosynthesis and chlorophyll fluorescence in leaves of watermelon seedlings. Hou, W.,Yang, F. S.,Hou, W.,Pan, J. L.,Guan, M. Y.,Sun, A. H.,Chen, H. L..

[2]Rootstocks influence fruit oleocellosis in 'Hamlin' sweet orange (Citrus sinensis L. Osbeck). Zheng, Yongqiang,Deng, Lie,He, Shaolan,Yi, Shilai,Zheng, Yongqiang,Zhou, Zhiqin,Zhao, Xuyang,Wang, Liang.

[3]Exogenous 24-epibrassinolide ameliorates high temperature-induced inhibition of growth and photosynthesis in Cucumis melo. Zhang, Y. P.,Chen, Y. Y.,Zhang, Y. P.,Yang, S. J.,Chen, Y. Y.,He, J..

[4]Genetic basis of traits related to stomatal conductance in wheat cultivars in response to drought stress. Wang, S. G.,Jia, S. S.,Sun, D. Z.,Wang, H. Y.,Dong, F. F.,Ma, H. X.,Jing, R. L.,Ma, G..

[5]Genetic gains in grain yield, net photosynthesis and stomatal conductance achieved in Henan Province of China between 1981 and 2008. Xia, X. C.,He, Z. H.,Zheng, T. C.,Yin, G. H.,Wang, L. N.,Han, Y. L.,Huang, F.,Tang, J. W.,Zhang, X. K.,Chen, L.,He, Z. H..

[6]Improvement of heat and drought photosynthetic tolerance in wheat by overaccumulation of glycinebetaine. Wang, Gui-Ping,Hui, Zhen,Li, Feng,Zhao, Mei-Rong,Zhang, Jin,Wang, Wei,Wang, Gui-Ping.

[7]Changes in photosynthesis, fluorescence, and nitrogen metabolism of hawthorn (Crataegus pinnatifida) in response to exogenous glutamic acid. Yu, C.,Lv, D. G.,Qin, S. J.,Yang, L.,Ma, H. Y.,Liu, G. C.,Yu, C..

[8]Effects of Partial Rootzone Irrigation on Growth and Physiological Characteristics in Apple Trees and Water Use Efficiency. Wei, Q.,Wang, X.,Zhang, Qing,Zhang, Qiang,Liu, S.,Liu, J.. 2011

[9]Hydrogen peroxide regulated photosynthesis in C-4-pepc transgenic rice. Ren, C. G.,Li, X.,Liu, X. L.,Wei, X. D.,Dai, C. C.,Liu, X. L.. 2014

[10]Characterization of transgenic cotton (Gossypium hirsutum L.) over-expressing Arabidopsis thaliana Related to ABA-insensitive3(ABI3)/Vivparous1 (AtRAV1) and AtABI5 transcription factors: improved water use efficiency through altered guard cell physiology. Fiene, Justin G.,Kalns, Lauren,Sword, Gregory A.,Mallick, Sayani,Mittal, Amandeep,Rock, Christopher D.,Nansen, Christian,Nansen, Christian,Dever, Jane.

[11]Effects of 1-butanol, neomycin and calcium on the photosynthetic characteristics of pepc transgenic rice. Li Xia,Wang Chao,Ren Chenggang. 2011

[12]Over-expression of ApKUP3 enhances potassium nutrition and drought tolerance in transgenic rice. Song, Z. -Z.,Song, Z. -Z.,Yang, S. -Y.,Su, Y. -H.,Yang, S. -Y.,Zuo, J.,Zuo, J..

[13]Mulching affects photosynthetic and chlorophyll a fluorescence characteristics during stage III of peach fruit growth on the rain-fed semiarid Loess Plateau of China. Wang, Chenbing,Chen, Baihong,Wang, Falin,Wang, Chenbing,Wang, Hong,Zhao, Xiumei,Wang, Falin.

[14]Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress. Guo, Rui,Li, Feng,Yan, Changrong,Zhong, Xiuli,Liu, Qi,Xia, Xu,Li, Haoru,Yang, Zongze,Zhao, Long. 2015

[15]5-aminolevulinic acid improves salt tolerance mediated by regulation of tetrapyrrole and proline metabolism in Brassica napus L. seedlings under NaCl stress. Xiong, Jun-Lan,Wang, Hang-Chao,Tan, Xiao-Yu,Zhang, Chun-Lei,Zhang, Chun-Lei,Naeem, Muhammad Shahbaz. 2018

[16]The physiological and metabolic changes in sugar beet seedlings under different levels of salt stress. Wang, Yuguang,Yu, Lihua,Zhao, Huijie,Sun, Xuewei,Sun, Fei,Geng, Gui,Wang, Yuguang,Yu, Lihua,Geng, Gui,Wang, Yuguang,Stevanato, Piergiorgio.

[17]Relationship between the Degree of Polymerization of Chitooligomers and Their Activity Affecting the Growth of Wheat Seedlings under Salt Stress. Zhang, Xiaoqian,Li, Kecheng,Liu, Song,Xing, Ronge,Yu, Huahua,Chen, Xiaolin,Qin, Yukun,Li, Pengcheng,Zhang, Xiaoqian,Li, Kecheng,Zou, Ping.

[18]Alleviation of exogenous 6-benzyladenine on two genotypes of eggplant (Solanum melongena Mill.) growth under salt stress. Wu, Xuexia,Chen, Jianlin,Yang, Shaojun,Zha, Dingshi,Wu, Xuexia,Chen, Jianlin,Yang, Shaojun,Zha, Dingshi,He, Jie. 2014

[19]SUB-CELLULAR DISTRIBUTION OF NUTRIENT ELEMENTS AND PHOTOSYNTHESIS PERFORMANCE IN ORYZA SATIVA L. SEEDLINGS UNDER SALT STRESS. Ma, Jing,Lv, Chunfang,Hao, Peifei,Yuan, Ze,Wang, Yuwen,Shen, Weijun,Xu, Chao,Chen, Guoxiang,Gao, Zhiping,Lv, Chuangen. 2017

[20]Molybdenum Affects Photosynthesis and Ionic Homeostasis of Chinese Cabbage under Salinity Stress. Hu, Chengxiao,Sun, Xuecheng,Zhao, Xiaohu,Tan, Qiling,Zhang, Ying,Zhang, Mu,Li, Na.

作者其他论文 更多>>