Identification of salinity-related genes in ENO2 mutant (eno2(-)) of Arabidopsis thaliana

文献类型: 外文期刊

第一作者: Zhang Yong-hua

作者: Zhang Yong-hua;Shi Zi-han;Cheng Hui-mei;Bing Jie;Ma Xiao-feng;Zheng Chao-xing;Zhang Gen-fa;Chen Chao;Li Hong-jie

作者机构:

关键词: ENO2;NaCl tolerance;abiotic stress;454 GS FLX sequencing;GO;KEGG

期刊名称:JOURNAL OF INTEGRATIVE AGRICULTURE ( 影响因子:2.848; 五年影响因子:2.979 )

ISSN: 2095-3119

年卷期: 2018 年 17 卷 1 期

页码:

收录情况: SCI

摘要: Abiotic stress poses a great threat to plant growth and can lead to huge losses in yield. Gene enolase2 (ENO2) is important in resistance to abiotic stress in various organisms. ENO2 T-DNA insertion mutant (eno2(-)) plants of Arabidopsis thaliana showed complete susceptibility to sodium chloride treatment when were analyzed either as whole plants or by measuring root growth during NaCl treatment. Quantitative real-time RT-PCR (RT-qPCR) was performed to investigate the expression profile of ENO2 in response to NaCl stress in Arabidopsis. The transcript level of ENO2 was rapidly elevated in 300 mmol L-1 NaCl treatment. ENO2 also responded to 300 mmol L-1 NaCl treatment at the protein level. To illuminate the mechanism underlying ENO2 resistance to salt at the transcriptional level, we studied the wild-type and eno2(-) Arabidopsis lines that were treated with 300 mmol L-1 NaCl for 18 h using 454 GS FLX, which resulted in an expressed sequence tag (EST) dataset. A total of 961 up-regulated and 746 down-regulated differentially expressed genes (DEGs) were identified in the pairwise comparison WT-18 h: eno2(-)-18 h. The DEGs were identified and functionally annotated using the databases of Gene Ontology (GO) and the Kyoto encyclopedia of genes and genomes (KEGG). The identified unigenes were subjected to GO analysis to determine biological, molecular, and cellular functions. The biological process was enriched in a total of 20 GO terms, the cellular component was enriched in 13 GO terms, and the molecular function was enriched in 11 GO terms. Using KEGG mapping, DEGs with pathway annotations contributed to 115 pathways. The top 3 pathways based on a statistical analysis were biosynthesis of the secondary metabolites (KO01110), plant-pathogen interactions (KO04626), and plant hormone signal transduction (KO04075). Based on these results, ENO2 contributes to increased resistance to abiotic stress. In particular, ENO2 is involved in some of the metabolic stress response pathways in Arabidopsis. Our work also demonstrates that this EST dataset will be a powerful resource for further studies of ENO2, such as functional analyses, investigations of biological roles, and molecular breeding. Additionally, 3-phosphoglycerate kinase (PGK), 3-phosphoglycerate kinase 1 (PGK1), triosephosphate isomerase (TPI), and pyruvate kinase (PK) in glycolysis interactions with ENO2 were verified using the yeast two-hybrid experiment, and ENO2 may regulate the expression of PGK, PGK1, TPI, and PK. Taken together, the results from this study reflects that ENO2 gene has an important role in the response to the high salt stress.

分类号:

  • 相关文献

[1]Proteome analysis of egg yolk after exposure to zinc oxide nanoparticles. Zhang, Pengfei,Zhao, Yong,Yu, Shuai,Hao, Yanan,Ge, Wei,Min, Lingjing,Shen, Wei,Li, Lan,Liu, Jing,Zhang, Honfu,Li, Qunjie,Kou, Xin,Ma, Huanfa.

[2]De Novo Characterization of Leaf Transcriptome Using 454 Sequencing and Development of EST-SSR Markers in Tea (Camellia sinensis). Wu, Hualing,Chen, Dong,Li, Jiaxian,Qiao, Xiaoyan,Huang, Hualin,He, Yumei,Wu, Hualing,Chen, Dong,Li, Jiaxian,Qiao, Xiaoyan,Huang, Hualin,He, Yumei,Yu, Bo.

[3]Hepatic transcriptome analysis of juvenile GIFT tilapia (Oreochromis niloticus), fed diets supplemented with different concentrations of resveratrol. Zheng, Yao,Wu, Wei,Hu, Gengdong,Meng, Shunlong,Fan, Limin,Song, Chao,Qiu, Liping,Chen, Jiazhang,Zhao, Zhixiang,Chen, Jiazhang,Chen, Jiazhang. 2018

[4]Dual Identification and Analysis of Differentially Expressed Transcripts of Porcine PK-15 Cells and Toxoplasma gondii during in vitro Infection. Zhou, Chun-Xue,Suo, Xun,Zhou, Chun-Xue,Suo, Xun,Zhou, Chun-Xue,Zhou, Dong-Hui,Liu, Qing,Zhu, Xing-Quan,Elsheikha, Hany M.,Zhu, Xing-Quan. 2016

[5]Genome-Wide Identification and Comparative Analysis of Cytosine-5 DNA Methyltransferase and Demethylase Families in Wild and Cultivated Peanut. Wang, Pengfei,Gao, Chao,Bian, Xiaotong,Zhao, Shuzhen,Zhao, Chuanzhi,Xia, Han,Song, Hui,Hou, Lei,Wan, Shubo,Wang, Xingjun. 2016

[6]Identification of a 467 bp Promoter of Maize Phosphatidylinositol Synthase Gene (ZmPIS) Which Confers High-Level Gene Expression and Salinity or Osmotic Stress Inducibility in Transgenic Tobacco. Zhang, Hongli,Hou, Jiajia,Jiang, Pingping,Qi, Shoumei,Zhang, Kewei,Li, Kunpeng,Xu, Changzheng,He, Qiuxia,Ding, Zhaohua,Wang, Zhiwu. 2016

[7]Genome-Wide Dissection of the Heat Shock Transcription Factor Family Genes in Arachis. Wang, Pengfei,Song, Hui,Li, Changsheng,Li, Pengcheng,Li, Aiqin,Guan, Hongshan,Hou, Lei,Wang, Xingjun,Wang, Xingjun. 2017

[8]The abiotic stress-responsive NAC transcription factor SlNAC11 is involved in drought and salt response in tomato (Solanum lycopersicum L.). Lingling Wang,Chen, Guoping,Zongli Hu,Mingku Zhu,Zhiguo Zhu,Jingtao Hu,Ghulam Qanmber,Guoping Chen.

[9]Resource use efficiency, ecological intensification and sustainability of intercropping systems. MAO Li-li,ZHANG Li-zhen,ZHANG Si-ping,Jochem B Evers,Wopke van der Werf,WANG Jing-jing,SUN Hong-quan,SU Zhi-cheng,Huub Spiertz. 2015

[10]Genome-wide characterization and comparative analysis of the MLO gene family in cotton. Xiaoyan Wang,Qifeng Ma,Lingling Dou,Zhen Liu,Renhai Peng,Shuxun Yu. 2016

[11]The Expression Profiling of the Lipoxygenase (LOX) Family Genes During Fruit Development, Abiotic Stress and Hormonal Treatments in Cucumber (Cucumis sativus L.). Yang, Xue-Yong,Jiang, Wei-Jie,Yu, Hong-Jun. 2012

[12]Characterization of a Wheat R2R3-MYB Transcription Factor Gene, TaMYB19, Involved in Enhanced Abiotic Stresses in Arabidopsis. Zhang, Lichao,Liu, Guoxiang,Zhao, Guangyao,Xia, Chuan,Jia, Jizeng,Liu, Xu,Kong, Xiuying.

[13]Characterization of the ZmCK1 Gene Encoding a Calcium-Dependent Protein Kinase Responsive to Multiple Abiotic Stresses in Maize. Wang, Chang-Tao,Shao, Jun-Ming.

[14]Expression of a rice DREB1 gene, OsDREB1D, enhances cold and high-salt tolerance in transgenic Arabidopsis. Zhang, Yang,Chen, Chen,Jin, Xiao-Fen,Xiong, Ai-Sheng,Peng, Ri-He,Yao, Quan-Hong,Zhang, Yang,Chen, Chen,Hong, Yi-Huan,Chen, Jian-Min.

[15]Genome-wide analysis and environmental response profiling of the FK506-binding protein gene family in maize (Zea mays L.). Yu, Yanli,Zhang, Hui,Li, Wencai,Mu, Chunhua,Zhang, Fajun,Wang, Liming,Meng, Zhaodong.

[16]Genome-wide analysis of the RING finger gene family in apple. Li, Yanze,Wu, Bingjiang,Yang, Guodong,Wu, Changai,Zheng, Chengchao,Yu, Yanli.

[17]Expansins: roles in plant growth and potential applications in crop improvement. Marowa, Prince,Ding, Anming,Kong, Yingzhen.

[18]Isolation and expression analysis of 18 CsbZIP genes implicated in abiotic stress responses in the tea plant (Camellia sinensis). Cao, Hongli,Wang, Lu,Yue, Chuan,Hao, Xinyuan,Wang, Xinchao,Yang, Yajun,Wang, Lu,Hao, Xinyuan,Wang, Xinchao,Yang, Yajun,Cao, Hongli,Wang, Lu,Yue, Chuan,Hao, Xinyuan,Wang, Xinchao,Yang, Yajun.

[19]Salicylic acid regulates sugar metabolism that confers tolerance to salinity stress in cucumber seedlings. Dong, Chun-Juan,Wang, Xiao-Li,Shang, Qing-Mao.

[20]CaMKK1 from Chenopodium album positively regulates salt and drought tolerance in transgenic tobacco. Wang, Juan,Lan, Xinxin,Jiang, Shengxiu,Ma, Yali,Zhang, Shiyue,Li, Yue,Li, Xiaorong,Lan, Haiyan,Wang, Juan,Ma, Yali.

作者其他论文 更多>>