The rice CONSTANS-like protein OsCOL15 suppresses flowering by promoting Ghd7 and repressing RID1

文献类型: 外文期刊

第一作者: Cheng, Shihua

作者: Cheng, Shihua;Cao, Liyong

作者机构:

关键词: Rice;CONSTANS-like protein;OsCOL15;Photoperiodic flowering

期刊名称:BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS ( 影响因子:3.575; 五年影响因子:3.381 )

ISSN: 0006-291X

年卷期: 2018 年 495 卷 1 期

页码:

收录情况: SCI

摘要: The photoperiodic flowering pathway is one of the most important regulatory networks controlling flowering time in rice (Oryza sativa L). Rice is a facultative short-day (SD) plant; flowering is promoted under inductive SD conditions and delayed under non-inductive long-day (LD) conditions. In rice, flowering inhibitor genes play an important role in maintaining the trade-off between reproduction and yield. In this study, we identified a novel floral inhibitor, OsCOL15, which encodes a CONSTANS-like transcription factor. Consistent with a function in transcriptional regulation, OsCOL15 localized to the nucleus. Moreover, OsCOL15 had transcriptional activation activity, and the central region of the protein between the B-box and CCT domains was required for this activity. We determined that OsCOL15 is most highly expressed in young organs and exhibits a diurnal expression pattern typical of other floral regulators. Overexpression of OsCOL15 resulted in a delayed flowering phenotype under both SD and LD conditions. Real-time quantitative RT-PCR analysis of flowering regulator gene expression suggested that OsCOL15 suppresses flowering by up-regulating the flowering repressor Grain number, plant height and heading date 7 (Ghd7) and down-regulating the flowering activator Rice Indeterminate 1 (RID1), thus leading to the down-regulation of the flowering activators Early heading date 1, Heading date 3a, and RICE FLOWERING LOCUS T1. These results demonstrate that OsCOL15 is an important floral regulator acting upstream of Ghd7 and RID1 in the rice photoperiodic flowering-time regulatory network. (C) 2017 Elsevier Inc. All rights reserved.

分类号:

  • 相关文献

[1]OsCOL16, encoding a CONSTANS-like protein, represses flowering by up regulating Ghd7 expression in rice. Wu, Weixun,Chen, Daibo,Zhang, Yingxin,Sun, Limping,Yang, Zhengfu,Zhao, Chunde,Zhan, Xiaodeng,Shen, Xihong,Yu, Ping,Fu, Yaping,Cao, Liyong,Cheng, Shihua,Wu, Weixun,Chen, Daibo,Zhang, Yingxin,Sun, Limping,Yang, Zhengfu,Zhao, Chunde,Zhan, Xiaodeng,Shen, Xihong,Yu, Ping,Fu, Yaping,Cao, Liyong,Cheng, Shihua,Zheng, Xiao-Ming,Ma, Weiwei,Zhang, Huan,Zhu, Shanshan.

[2]Phytochrome B Negatively Affects Cold Tolerance by Regulating OsDREB1 Gene Expression through Phytochrome Interacting Factor-Like Protein OsPIL16 in Rice. He, Yanan,Li, Yaping,Cui, Lixin,Xie, Lixia,Zheng, Chongke,Zhou, Guanhua,Zhou, Jinjun,Xie, Xianzhi,Li, Yaping,Cui, Lixin. 2016

[3]A Kelch Motif-Containing Serine/Threonine Protein Phosphatase Determines the Large Grain QTL Trait in Rice. Hu, Zejun,Sun, Fan,Xin, Xiaoyun,Qian, Xi,Yang, Jingshui,Luo, Xiaojin,Hu, Zejun,He, Haohua,Wang, Wenxiang,Zhang, Shiyong. 2012

[4]Genome-wide identification of microRNAs and their targets in wild type and phyB mutant provides a key link between microRNAs and the phyB-mediated light signaling pathway in rice. Sun, Wei,wu, Xiu,Xie, Xianzhi,Xu, Xiao Hui,Lu, Xingbo,Sun, Hongwei,Wang, Yong. 2015

[5]Overexpression of an S-like ribonuclease gene, OsRNS4, confers enhanced tolerance to high salinity and hyposensitivity to phytochrome-mediated light signals in rice. Zheng, Jun,Wang, Yingying,He, Yanan,Zhou, Jinjun,Li, Yaping,Liu, Qianqian,Xie, Xianzhi,Zheng, Jun,Wang, Yingying,He, Yanan,Zhou, Jinjun,Xie, Xianzhi. 2014

[6]Distribution Characteristics of Soil Cadmium in Different Textured Paddy Soil Profiles and Its Relevance with Cadmium Uptake by Crops. Wang Zheng-yin,Qin Yu-sheng,Zhan Shao-jun,Yu Hua,Tu Shi-hua. 2013

[7]Overexpression of OsPIL15, a phytochromeinteracting factor- like protein gene, represses etiolated seedling growth in rice. Zhou, Jinjun,Liu, Qianqian,Wang, Yingying,Zhang, Shiyong,Cheng, Huimin,Yan, Lihua,Li, Li,Xie, Xianzhi,Zhou, Jinjun,Wang, Yingying,Zhang, Shiyong,Xie, Xianzhi,Liu, Qianqian,Xie, Xianzhi,Zhang, Fang,Chen, Fan. 2014

[8]DISTRIBUTION CHARACTERISTICS, BIOACCUMULATION, AND SOURCES OF MERCURY IN RICE AT NANSI LAKE AREA, SHANDONG PROVINCE, CHNIA. Liu, H.,Zhang, J.,Dai, J. L.,Wang, L. H.,Zhang, J.,Li, G. X.. 2015

[9]Nitrogen Status Diagnosis of Rice by Using a Digital Camera. Fan Ming-sheng,Zhang Fu-suo,Chen Xin-ping,Jia Liang-liang,Sun Yan-ming,Lue Shi-hua. 2009

[10]Influence of unflooded mulching cultivation on nitrogen uptake and utilization of fertilizer nitrogen by rice. Liu, Xuejun,Zhang, Fusuo,Mao, Daru,Zeng, Xingzhong,Lu, Shihua,Wang, Mingtian. 2008

[11]Overexpression of a phytochrome-regulated tandem zinc finger protein gene, OsTZF1, confers hypersensitivity to ABA and hyposensitivity to red light and far-red light in rice seedlings. Zhou, Jinjun,Fan, Zhongxue,Xie, Xianzhi,Zhang, Cheng,Zhou, Jinjun,Fan, Zhongxue,Xie, Xianzhi,Zhang, Cheng,Ma, Huiquan,Zhang, Fang,Chen, Fan. 2012

[12]Enhancement of innate immune system in monocot rice by transferring the dicotyledonous elongation factor Tu receptor EFR. Lu, Fen,Wang, Huiqin,Wang, Shanzhi,Jiang, Wendi,Yang, Jun,Sun, Wenxian,Lu, Fen,Wang, Huiqin,Wang, Shanzhi,Jiang, Wendi,Yang, Jun,Sun, Wenxian,Shan, Changlin,Li, Bin,Shan, Changlin,Li, Bin,Yang, Jun,Zhang, Shiyong. 2015

[13]A missense mutation in the transmembrane domain of CESA9 affects cell wall biosynthesis and plant growth in rice. Wang, Daofeng,Lan, Jinhao,Wang, Daofeng,Zhao, Jinfeng,Li, Xueyong,Yuan, Shoujiang,Yin, Liang,Guo, Baotai. 2012

[14]Mutations in the MIT3 gene encoding a caroteniod isomerase lead to increased tiller number in rice. Liu, Lihua,Peng, Peng,Qiu, Haiyang,Zhao, Jinfeng,Fang, Jingjing,Patil, Suyash Bhimgonda,Li, Xueyong,Xie, Tingting,Zhang, Wenhui,Wang, Yiqin,Fang, Shuang,Chu, Jinfang,Yuan, Shoujiang. 2018

[15]Detection of epistatic interactions of three QTLs for heading date in rice using single segment substitution lines. Ding, Han-Feng,Liu, Xu,Li, Run-Fang,Wang, Wen-Ying,Zhang, Y.,Zhang, Xiao-Dong,Yao, Fang-Yin,Li, Guang-Xian,Jiang, Ming-Song,Ding, Han-Feng.

[16]Delimitation of the PSH1(t) gene for rice purple leaf sheath to a 23.5 kb DNA fragment. Wang, Wen-Ying,Ding, Han-Feng,Li, Run-Fang,Liu, Xu,Zhang, Yu,Yao, Fang-Yin,Li, Guang-Xian,Jiang, Ming-Song.

[17]Determination of 5-hydroxymethyl-2-deoxycytidine in Rice by High-performance Liquid Chromatography-Tandem Mass Spectrometry with Isotope Dilution. Wang, Xiaoli,Wang, Shanshan,Chen, Xiangfeng,Chen, Yue,Yuan, Jinpeng,Zhao, Rusong,Guo, Tao. 2017

[18]Functional Marker Development and Effect Analysis of Grain Size Gene GW2 in Extreme Grain Size Germplasm in Rice. Zhang Ya-dong,Zheng Jia,Liang Yan-li,Zhao Chun-fang,Chen Tao,Zhao Qing-yong,Zhu Zhen,Zhou Li-hui,Yao Shu,Zhao Ling,Yu Xing,Wang Cai-lin. 2015

[19]Synonymous codon usage and gene function are strongly related in Oryza sativa. Liu, QP,Dou, SJ,Ji, ZJ,Xue, QZ. 2005

[20]Correlation between appearance of embryogenic cells and the IAA levels in rice somatic cell culture. Chen, YF,Zhou, X,Tang, RS,Zhang, JY,Mei, CS. 1998

作者其他论文 更多>>