Identification and characterization of a pathogenicity-related gene VdCYP1 from Verticillium dahliae

文献类型: 外文期刊

第一作者: Zhang, Dan-Dan

作者: Zhang, Dan-Dan;Wang, Xin-Yan;Chen, Jie-Yin;Kong, Zhi-Qiang;Gui, Yue-Jing;Li, Nan-Yang;Bao, Yu-Ming;Dai, Xiao-Feng

作者机构:

期刊名称:SCIENTIFIC REPORTS ( 影响因子:4.379; 五年影响因子:5.133 )

ISSN: 2045-2322

年卷期: 2016 年 6 卷

页码:

收录情况: SCI

摘要: Verticillium dahliae is a phytopathogenic fungus that causes vascular wilt disease in a wide variety of crop plants, thereby causing extensive economic loss. In present study, one V. dahliae T-DNA mutant M01C06 showed the pathogenicity loss on cotton, and the expression of a flanking gene encoding cytochrome P450 monooxygenase (P450, VdCYP1) was strongly repressed. P450s of fungi could affect the fungal pathogenicity by involving in the synthesis of secondary metabolites. However, there was no report about the pathogenic function of P450s in V. dahliae. VdCYP1 gene deletion and complementation experiments confirmed that VdCYP1 was the pathogenicity-related gene in V. dahliae. A comparison of culture supernatants of the VdCYP1 deletion mutants and wild-type strains indicates that at least 14 kinds of secondary metabolites syntheses were affected due to VdCYP1 gene deletion. One of these compounds, sulfacetamide, had the ability to induce the necrosis and wilting symptoms in cotton. Above results indicate that VdCYP1 could participate in pathogenesis by involving the secondary metabolism in V. dahliae, such as the compound sulfacetamide. In conclusion, VdCYP1 acts as an important pathogenicity-related factor to involve in secondary metabolism that likely contributes to the pathogenic process in V. dahliae.

分类号:

  • 相关文献
作者其他论文 更多>>