Different Gene Expression Patterns between Leaves and Flowers in Lonicera japonica Revealed by Transcriptome Analysis

文献类型: 外文期刊

第一作者: Zhang, Libin

作者: Zhang, Libin;Fu, Chunhua;Wu, Gang;Jia, Haibo;Yu, Longjiang;Li, Maoteng;Zhang, Libin;Xiang, Jun;Gan, Jianping;Li, Maoteng;Long, Yan

作者机构:

关键词: Lonicera japonica;transcriptome;transcription factors;differentially expressed genes (DEGs);network

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.753; 五年影响因子:6.612 )

ISSN: 1664-462X

年卷期: 2016 年 7 卷

页码:

收录情况: SCI

摘要: The perennial and evergreen twining vine, Lonicera japonica is an important herbal medicine with great economic value. However, gene expression information for flowers and leaves of L. japonica remains elusive, which greatly impedes functional genomics research on this species. In this study, transcriptome profiles from leaves and flowers of L. japonica were examined using next-generation sequencing technology. A total of 239.41 million clean reads were used for de novo assembly with Trinity software, which generated 150,523 unigenes with N-50 containing 947 bp. All the unigenes were annotated using Nr, SwissProt, COGs (Clusters of Orthologous Groups), GO (Gene Ontology), and KEGG (Kyoto Encyclopedia of Genes and Genomes) databases. A total of 35,327 differentially expressed genes (DEGs, P <= 0.05) between leaves and flowers were detected. Among them, a total of 6602 DEGs were assigned with important biological processes including "Metabolic process," "Response to stimulus," "Cellular process," and etc. KEGG analysis showed that three possible enzymes involved in the biosynthesis of chlorogenic acid were up-regulated in flowers. Furthermore, the TF-based regulation network in L. japonica identified three differentially expressed transcription factors between leaves and flowers, suggesting distinct regulatory roles in L. japonica. Taken together, this study has provided a global picture of differential gene expression patterns between leaves and flowers in L japonica, providing a useful genomic resource that can also be used for functional genomics research on L. japonica in the future.

分类号:

  • 相关文献

[1]De novo Transcriptome Assembly of Floral Buds of Pineapple and Identification of Differentially Expressed Genes in Response to Ethephon Induction. Liu, Chuan-He,Fan, Chao,Liu, Chuan-He,Fan, Chao. 2016

[2]Global analysis of the Gossypium hirsutum L. Transcriptome during leaf senescence by RNA-Seq. Min Lin,Chaoyou Pang,Shuli Fan,Meizhen Song,Hengling Wei,Shuxun Yu. 2015

[3]Transcriptome Analysis of Stem and Globally Comparison with Other Tissues in Brassica napus. Miao, Liyun,Zhang, Libin,Raboanatahiry, Nadia,Fu, Chunhua,Li, Maoteng,Miao, Liyun,Xiang, Jun,Gan, Jianping,Li, Maoteng,Lu, Guangyuan,Zhang, Xuekun. 2016

[4]Chinese herbs (Astragalus membranaceus and Lonicera japonica) and boron enhance the non-specific immune response of Nile tilapia (Oreochromis niloticus) and resistance against Aeromonas hydrophila. Ardo, Laszlo,Varadi, Laszlo,Jeney, Zsigmond,Jeney, Galina,Yin, Guojun,Xu, Pao,Szigeti, Gabor.

[5]Lonicera japonica Thunb.: Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. Shang, Xiaofei,Li, Maoxing,Li, Maoxing,Ding, Hong,Shang, Xiaofei,Pan, Hu,Miao, Xiaolou. 2011

[6]The research of rural distance learning platform. Zhao, Jichun,Guo, Jianxin,Gong, Jing,Sun, Sufen,Zhang, Junfeng. 2011

[7]Integrative Analyses of miRNA-mRNA Interactions Reveal let-7b, miR-128 and MAPK Pathway Involvement in Muscle Mass Loss in Sex-Linked Dwarf Chickens. Luo, Wen,Li, Guihuan,Nie, Qinghua,Zhang, Xiquan,Luo, Wen,Li, Guihuan,Nie, Qinghua,Zhang, Xiquan,Luo, Wen,Li, Guihuan,Nie, Qinghua,Zhang, Xiquan,Lin, Shumao. 2016

[8]Study on network of epoxidized natural rubber with different epoxidation degree: measured by H-1-NMR. Gao, Tianming,Huang, Honghai,Li, Puwang,Xu, Kui,Huang, Maofang. 2013

[9]Constructing a comprehensive gene co-expression based interactome in Bos taurus. Chen, Yan,Zhang, Wengang,Xu, Ling,Gao, Xue,Zhang, Lupei,Gao, Huijiang,Xu, Lingyang,Li, Junya,Liu, Yining,Du, Min,Zhao, Min. 2017

[10]A coherent transcriptional feed-forward motif model for mediating auxin-sensitive PIN3 expression during lateral root development. Chen, Qian,Liu, Yang,Maere, Steven,Van Isterdael, Gert,Xuan, Wei,Vassileva, Valya,Kitakura, Saeko,Wabnik, Krzysztof,Friml, Jiri,Beeckman, Tom,Vanneste, Steffen,Chen, Qian,Liu, Yang,Maere, Steven,Van Isterdael, Gert,Xuan, Wei,Vassileva, Valya,Kitakura, Saeko,Wabnik, Krzysztof,Friml, Jiri,Beeckman, Tom,Vanneste, Steffen,Chen, Qian,Li, Chuanyou,Liu, Yang,Lee, Eunkyoung,Lucas, Jessica,Sack, Fred,Xie, Zidian,Grotewold, Erich,Xie, Zidian,Grotewold, Erich,Vassileva, Valya,Kitakura, Saeko,Marhavy, Peter,Wabnik, Krzysztof,Benkova, Eva,Friml, Jiri,Marhavy, Peter,Geldner, Niko,Le, Jie,Fukaki, Hidehiro.

[11]Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Fang, Chao,Ma, Yanming,Liu, Zhi,Wang, Zheng,Yang, Rui,Zhang, Min,Pan, Yi,Zhou, Guoan,Shen, Yanting,Liu, Shulin,Liu, Tengfei,Zhang, Jixiang,Zhu, Baoge,Tian, Zhixi,Wu, Shiwen,Yu, Hong,Qin, Hao,Yuan, Jia,Li, Jiayang,Wang, Guodong,Hu, Guanghui,Zhou, Zhengkui,Ren, Haixiang,Wang, Yanping,Du, Weiguang,Han, Dezhi,Yan, Hongrui,Yuan, Xiaohui,Kong, Fanjiang,Liu, Baohui,Zhang, Zhiwu,Fang, Chao,Liu, Zhi,Shen, Yanting,Liu, Shulin,Liu, Tengfei,Zhang, Jixiang,Wang, Guodong,Tian, Zhixi. 2017

[12]Design and construction of the national agricultural information system. Guo, Xichuan. 2007

[13]Digital Gene Expression Analysis of Ponkan Mandarin (Citrus reticulata Blanco) in Response to Asia Citrus Psyllid-Vectored Huanglongbing Infection. Zhong, Yun,Cheng, Chunzhen,Jiang, Bo,Jiang, Nonghui,Hu, Minlun,Zhong, Guangyan,Cheng, Chunzhen,Zhang, Yongyan,Jiang, Bo,Jiang, Nonghui,Hu, Minlun,Zhong, Guangyan. 2016

[14]Comparative transcriptome analysis of soybean response to bean pyralid larvae. Sun, Zudong,Cai, Zhaoyan,Chen, Huaizhu,Lai, Zhenguang,Yang, Shouzhen,Tang, Xiangmin. 2017

[15]Identification of differentially expressed genes implicated in peel color (red and green) of Dimocarpus confinis. Jiang, Fan,Chen, Xiu-ping,Hu, Wen-shun,Zheng, Shao-quan,Jiang, Fan,Chen, Xiu-ping,Hu, Wen-shun,Zheng, Shao-quan. 2016

[16]Large-scale transcriptome comparison of sunflower genes responsive to Verticillium dahliae. Guo, Shuchun,Zuo, Yongchun,Wu, Chengyan,Su, Wenxia,Jin, Wen,Li, Qianzhong,Guo, Shuchun,Zhang, Yanfang,Yu, Haifeng,An, Yulin,Zuo, Yongchun. 2017

[17]An RNA-Seq Analysis of Grape Plantlets Grown in vitro Reveals Different Responses to Blue, Green, Red LED Light, and White Fluorescent Light. Li, Chun-Xia,Dong, Rui-Qi,Khalil-Ur-Rehman, Muhammad,Tao, Jian-Min,Xu, Zhi-Gang,Wang, Lian-Zhen,Chang, Sheng-Xin,Wang, Lian-Zhen. 2017

[18]Gene expression changes in leaves of Citrus sinensis (L.) Osbeck infected by Citrus tristeza virus. Cheng, Chunzhen,Cheng, Chunzhen,Zhang, Yongyan,Zhong, Yun,Yang, Jiawei,Yan, Shutang.

[19]De novo transcriptome sequencing of pakchoi (Brassica rapa L. chinensis) reveals the key genes related to the response of heat stress. Xu, Hai,Song, Bo,Chen, Jinfeng,Xu, Hai,Chen, Longzheng,Song, Bo,Fan, Xiaoxue,Yuan, Xihan.

[20]Fruit quality and differentially expressed genes of winter-harvested pineapple in response to elevated temperature over a short postharvest period. Liu, Chuan-He,Liu, Yan,Liu, Chuan-He,Liu, Yan.

作者其他论文 更多>>