Exogenous auxin regulates multi-metabolic network and embryo development, controlling seed secondary dormancy and germination in Nicotiana tabacum L.

文献类型: 外文期刊

第一作者: Li, Zhenhua

作者: Li, Zhenhua;Wang, Jianhua;Li, Zhenhua;Zhang, Jie;Zhao, Jiehong;Ren, Xueliang;Liu, Yiling;Fu, Junjie;Wang, Guoying

作者机构:

关键词: Auxin;Seed dormancy;Germination;Wateruptake;Embryo development;Endosperm burst;Hormone;Nicotiana tabacum;RNA-seq

期刊名称:BMC PLANT BIOLOGY ( 影响因子:4.215; 五年影响因子:4.96 )

ISSN: 1471-2229

年卷期: 2016 年 16 卷

页码:

收录情况: SCI

摘要: Background: Auxin was recognized as a secondary dormancy phytohormone, controlling seed dormancy and germination. However, the exogenous auxin-controlled seed dormancy and germination remain unclear in physiological process and gene network. Results: Tobacco seeds soaked in 1000 mg/l auxin solution showed markedly decreased germination compared with that in low concentration of auxin solutions and ddH(2)O. Using an electron microscope, observations were made on the seeds which did not unfold properly in comparison to those submerged in ddH(2)O. The radicle traits measured by WinRHIZO, were found to be also weaker than the other treatment groups. Quantified by ELISA, there was no significant difference found in beta-1,3glucanase activity and abscisic acid (ABA) content between the seeds imbibed in gradient concentration of auxin solution and those soaked in ddH(2)O. However, gibberellic acid (GA) and auxin contents were significantly higher at the time of exogenous auxin imbibition and were gradually reduced at germination. RNA sequencing (RNA-seq), revealed that the transcriptome of auxin-responsive dormancy seeds were more similar to that of the imbibed seeds when compared with primary dormancy seeds by principal component analysis. The results of gene differential expression analysis revealed that auxin-controlled seed secondary dormancy was associated with flavonol biosynthetic process, gibberellin metabolic process, adenylyl-sulfate reductase activity, thioredoxin activity, glutamate synthase (NADH) activity and chromatin regulation. In addition, auxin-responsive germination responded to ABA, auxin, jasmonic acid (JA) and salicylic acid (SA) mediated signaling pathway (red, far red and blue light), glutathione and methionine (Met) metabolism. Conclusions: In this study, exogenous auxin-mediated seed secondary dormancy is an environmental model that prevents seed germination in an unfavorable condition. Seeds of which could not imbibe normally, and radicles of which also could not develop normally and emerge. To complete the germination, seeds of which would stimulate more GA synthesis to antagonize the stimulation of exogenous auxin. Exogenous auxin regulates multi-metabolic networks controlling seed secondary dormancy and germination, of which the most important thing was that we found the auxin-responsive seed secondary dormancy refers to epigenetic regulation and germination to enhance Met pathway. Therefore, this study uncovers a previously unrecognized transcriptional regulatory networks and physiological development process of seed dormancy and germination with superfluous auxin signal activate.

分类号:

  • 相关文献

[1]Microarray-based gene expression analysis of strong seed dormancy in rice cv. N22 and less dormant mutant derivatives. Wu, Tao,Yang, Chunyan,Ding, Baoxu,Feng, Zhiming,Wang, Qian,He, Jun,Jiang, Ling,Wan, Jianmin,Wan, Jianmin,Tong, Jianhua,Xiao, Langtao. 2016

[2]Global analysis of canola genes targeted by SHORT HYPOCOTYL UNDER BLUE 1 during endosperm and embryo development. Zhang, Huanan,Kuang, Rui,Cheng, Feng,Wang, Xiaowu,Xiao, Yuguo,Kang, Xiaojun,Ni, Min. 2017

[3]Analysis of global gene expression profiles to identify differentially expressed genes critical for embryo development in Brassica rapa. Zhang, Yu,Peng, Lifang,Wu, Ya,Shen, Yanyue,Wang, Jianbo,Wu, Xiaoming.

[4]Organ- and Growing Stage-Specific Expression of Solanesol Biosynthesis Genes in Nicotiana tabacum Reveals Their Association with Solanesol Content. Yan, Ning,Zhang, Hongbo,Zhang, Zhongfeng,Du, Yongmei,Liu, Xinmin,Liu, Yanhua,Shi, John,Timko, Michael P..

[5]Comparative Transcriptome Analysis of Primary Roots of Brassica napus Seedlings with Extremely Different Primary Root Lengths Using RNA Sequencing. Dun, Xiaoling,Tao, Zhangsheng,Wang, Jie,Wang, Xinfa,Liu, Guihua,Wang, Hanzhong. 2016

[6]Transcriptome Profiling Reveals Auxin and Cytokinin Regulating Somatic Embryogenesis in Different Sister Lines of Cotton Cultivar CCRI24. Xu Zhenzhen. 2013

[7]Mutant Transcriptome Sequencing Provides Insights into Pod Development in Peanut (Arachis hypogaea L.). Wan, Liyun,Li, Bei,Lei, Yong,Yan, Liying,Ren, Xiaoping,Chen, Yuning,Jiang, Huifang,Zhang, Juncheng,Liao, Boshou,Dai, Xiaofeng,Guo, Wei,Chen, Ao. 2017

[8]Allelopathic effects of Hemistepta lyrata on the germination and growth of wheat, sorghum, cucumber, rape, and radish seeds. Gao, Xingxiang,Li, Mei,Gao, Zongjun,Li, Changsong,Sun, Zuowen.

[9]Treating Cloned Embryos, But Not Donor Cells, with 5-aza-2 '-deoxycytidine Enhances the Developmental Competence of Porcine Cloned Embryos. Huan, Yan Jun,Zhu, Jiang,Xie, Bing Teng,Wang, Jian Yu,Liu, Shi Chao,Zhou, Yang,Kong, Qing Ran,Liu, Zhong Hua,Huan, Yan Jun,He, Hong Bin. 2013

[10]Comparative transcriptome analysis of basal and zygote-located tip regions of peanut ovaries provides insight into the mechanism of light regulation in peanut embryo and pod development. Zhang, Ye,Wang, Pengfei,Xia, Han,Zhao, Chuanzhi,Hou, Lei,Li, Changsheng,Zhao, Shuzhen,Wang, Xingjun,Zhang, Ye,Gao, Chao,Wang, Xingjun. 2016

[11]The Impact of Linolenic Acid on in vitro Development of Buffalo Embryos. Zheng, Haiying,Yang, Chunyan,Shang, Jianghua,Pang, Chunying,Huang, Fenxiang,Wang, Jian,Yang, Bingzhuang,Liang, Xianwei. 2013

[12]Genomic and expression analysis of a solute carrier protein (CcSLC25a5) gene from Cyprinus carpio Linnaeus. Jiang, Li,Cheng, Anda,Wang, Yangyang,Zhang, Baoyong,Cheng, Anda,Wang, Yangyang,Zhang, Baoyong. 2013

[13]Construction and analysis of a subtractive cDNA library of early embryonic development in duck. Liu, Y. L.,Zhong, L. X.,Shi, F. X.,Liu, Y. L.,Zhong, L. X.,Li, J. J.,Shen, J. D.,Wang, D. Q.,Tao, Z. R.,Lu, L. Z.. 2013

[14]A three-dimensional culture system using alginate hydrogel prolongs hatched cattle embryo development in vitro. Zhao, Shuan,Liu, Zhen-Xing,Gao, Hui,Wu, Yi,Fang, Yuan,Wu, Shuai-Shuai,Li, Ming-Jie,Zeng, Shen-Ming,Zhao, Shuan,Liu, Zhen-Xing,Gao, Hui,Wu, Yi,Fang, Yuan,Wu, Shuai-Shuai,Li, Ming-Jie,Zeng, Shen-Ming,Zhao, Shuan,Liu, Zhen-Xing,Gao, Hui,Wu, Yi,Fang, Yuan,Wu, Shuai-Shuai,Li, Ming-Jie,Zeng, Shen-Ming,Bai, Jia-Hua,Liu, Yan,Evans, Alexander.

[15]In vitro maturation and artificial activation of donkey oocytes. Wu, Kaifeng,Cui, Liang,Zhao, Lixia,Liu, Yiyi,Zhou, Huanmin,Zhao, Gaoping,Tan, Xiuwen.

[16]EMBRYONIC FACTOR 31 encodes a tyrosyl-tRNA synthetase that is essential for seed development. Jiang, Li,Wang, Shu,Li, Hengde,Jiang, Li,Jiang, Li,Li, Huijie,Zhang, Guoxin.

[17]Identification of QTLs for seed dormancy in rice (Oryza sativa L.). Xie, Kun,Jiang, Ling,Lu, BingYue,Yang, ChunYan,Li, LinFang,Liu, Xi,Zhang, Long,Zhao, ZhiGang,Wan, JianMin,Wan, JianMin.

[18]Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo-oxidation in rice. Fang, Jun,Chai, Chenglin,Li, Chunlai,Tang, Jiuyou,Huang, Zejun,Guo, Xiaoli,Sun, Changhui,Liu, Min,Wang, Yiqin,Cheng, Zhukuan,Chu, Chengcai,Fang, Jun,Chai, Chenglin,Li, Chunlai,Tang, Jiuyou,Huang, Zejun,Guo, Xiaoli,Sun, Changhui,Liu, Min,Wang, Yiqin,Cheng, Zhukuan,Chu, Chengcai,Fang, Jun,Chai, Chenglin,Li, Chunlai,Tang, Jiuyou,Huang, Zejun,Guo, Xiaoli,Qian, Qian,Sun, Lei,Zhang, Yan,Lu, Qingtao,Lu, Congming,Han, Bin,Chen, Fan.

[19]Transcriptomics Analysis Identified Candidate Genes Colocalized with Seed Dormancy QTLs in Rice (Oryza sativa L.). Qin, Huaide,Xie, Kun,Jiang, Ling,Wan, Jianmin,Wu, Fuqing,Cheng, Zhijun,Guo, Xiuping,Zhang, Xin,Wang, Jie,Lei, Cailin,Wang, Jiulin,Mao, Long,Wan, Jianmin.

[20]Genome-Wide Association Study of Seed Dormancy and the Genomic Consequences of Improvement Footprints in Rice (Oryza sativa L.). Lu, Qing,Niu, Xiaojun,Zhang, Mengchen,Wang, Caihong,Xu, Qun,Feng, Yue,Yang, Yaolong,Wang, Shan,Yuan, Xiaoping,Yu, Hanyong,Wang, Yiping,Wei, Xinghua,Lu, Qing,Chen, Xiaoping,Liang, Xuanqiang,Lu, Qing,Chen, Xiaoping,Liang, Xuanqiang. 2018

作者其他论文 更多>>