Integrating Hormone- and Micromolecule-Mediated Signaling with Plasmodesmal Communication

文献类型: 外文期刊

第一作者: Han, Xiao

作者: Han, Xiao;Kim, Jae-Yean

作者机构:

关键词: callose;cell-to-cell movement;hormone;intercellular signaling;plasmodesmata

期刊名称:MOLECULAR PLANT ( 影响因子:13.164; 五年影响因子:16.357 )

ISSN: 1674-2052

年卷期: 2016 年 9 卷 1 期

页码:

收录情况: SCI

摘要: Intercellular and supracellular communications through plasmodesmata are involved in vital processes for plant development and physiological responses. Micro- and macromolecules, including hormones, RNA, and proteins, serve as biological information vectors that traffic through the plasmodesmata between cells. Previous studies demonstrated that the plasmodesmata are elaborately regulated, whereby a long queue of multiple signaling molecules forms. However, the mechanism by which these signals are coupled or coordinated in terms of simultaneous transport in a single channel remains a puzzle. In the last few years, several phytohormones that could function as both non-cell-autonomous signals and plasmodesmal regulators have been disclosed. Plasmodesmal regulators such as auxin, salicylic acid, reactive oxygen species, gibberellic acids, chitin, and jasmonic acid could regulate intercellular trafficking by adjusting plasmodesmal permeability. Here, callose, along with beta-glucan synthase and beta-glucanase, plays a critical role in regulating plasmodesmal permeability. Interestingly, most of the previously identified regulators are capable of diffusing through the plasmodesmata. Given the small sizes of these molecules, the plasmodesmata are prominent intercellular channels that allow diffusion-based movement of those signaling molecules. Obviously, intercellular communication is under the control of a major mechanism, named a feedback loop, at the plasmodesmata, which mediates complicated biological behaviors. Prospective research on the mechanism of coupling micromolecules at the plasmodesmata for developmental signaling and nutrient provision will help us to understand how plants coordinate their development and photosynthetic assimilation, which is important for agriculture.

分类号:

  • 相关文献

[1]Endoplasmic reticulum export and vesicle formation of the movement protein of Chinese wheat mosaic virus are regulated by two transmembrane domains and depend on the secretory pathway. Zheng, Shiling,Zhou, Xueping,Andika, Ida Bagus,Sun, Liying,Chen, Jianping,Tan, Zilong,Kondo, Hideki.

[2]NbEXPA1, an alpha-expansin, is plasmodesmata-specific and a novel host factor for potyviral infection. Li, Fangfang,Renaud, Justin,Shen, Wentao,Li, Yinzi,Guo, Lihua,Cui, Hongguang,Sumarah, Mark,Wang, Aiming,Park, Sang-Ho,Li, Yinzi,Wang, Aiming,Shen, Wentao,Guo, Lihua,Park, Sang-Ho,Cui, Hongguang. 2017

[3]A transmembrane domain determines the localization of rice stripe virus pc4 to plasmodesmata and is essential for its function as a movement protein. Rong, Lingling,Lu, Yuwen,Lin, Lin,Zheng, Hongying,Yan, Fei,Chen, Jianping.

[4]The C-terminal region of the Turnip mosaic virus P3 protein is essential for viral infection via targeting P3 to the viral replication complex. Cui, Xiaoyan,Wu, Guanwei,Chen, Xin,Cui, Xiaoyan,Yaghmaiean, Hoda,Wu, Guanwei,Wu, Xiaoyan,Wang, Aiming,Cui, Xiaoyan,Yaghmaiean, Hoda,Wu, Guanwei,Thorn, Greg,Wang, Aiming,Wu, Xiaoyan,Yaghmaiean, Hoda. 2017

[5]The Rice stripe virus pc4 functions in movement and foliar necrosis expression in Nicotiana benthamiana. Pei, Xinwu,Wang, Zhixing,Jia, Shirong,Zhang, Yonggiang,Li, Weimin,Guo, Shiwei.

[6]Thiamine-induced priming against root-knot nematode infection in rice involves lignification and hydrogen peroxide generation. Ji, Hong-Li,Gheysen, Godelieve,Kyndt, Tina,Huang, Wen-Kun,Ji, Hong-Li.

[7]Silicon amendment to rice plants contributes to reduced feeding in a phloem-sucking insect through modulation of callose deposition. Li, Pei,Li, Fei,Ali, Shahbaz,Sun, Xiaoqin,Hou, Maolin,Yang, Lang,Li, Pei,Li, Fei,Ali, Shahbaz,Sun, Xiaoqin,Hou, Maolin,Yang, Lang,Li, Pei,Li, Fei,Ali, Shahbaz,Sun, Xiaoqin,Hou, Maolin. 2018

[8]Biochar-amended potting medium reduces the susceptibility of rice to root-knot nematode infections. Ji, Hong-li,Gheysen, Godelieve,Kyndt, Tina,Huang, Wen-kun,Ji, Hong-li,Debode, Jane. 2015

[9]A Strategy to Validate the Role of Callose-mediated Plasmodesmal Gating in the Tropic Response. Kumar, Ritesh,Wu, Shu Wei,Iswanto, Arya Bagus Boedi,Kumar, Dhinesh,Kim, Jae-Yean,Han, Xiao. 2016

[10]GLUCAN SYNTHASE-LIKE 5 (GSL5) Plays an Essential Role in Male Fertility by Regulating Callose Metabolism During Microsporogenesis in Rice. Shi, Xiao,Sun, Xuehui,Zhang, Zhiguo,Feng, Dan,Zhang, Qian,Han, Lida,Wu, Jinxia,Lu, Tiegang.

[11]Defective callose walls and cell plates during abnormal meiosis cause male-sterility in the oat mutant zbs1. Shi Xiao,Wu Jin-xia,Han Xiao,Zhou Hai-tao,Yang Xiao-hong,Li Tian-liang,Zhang Xin-jun,Yang Cai.

[12]Callose synthesis during reproductive development in monocotyledonous and dicotyledonous plants. Shi, Xiao,Han, Xiao,Lu, Tie-gang.

[13]Transcriptome Analysis of Calcium and Hormone-Related Gene Expressions during Different Stages of Peanut Pod Development. Li, Yan,Meng, Jingjing,Yang, Sha,Guo, Feng,Zhang, Jialei,Geng, Yun,Cui, Li,Li, Xinguo,Wan, Shubo. 2017

[14]Small RNA profiling and degradome analysis reveal regulation of microRNA in peanut embryogenesis and early pod development. Gao, Chao,Wang, Pengfei,Zhao, Shuzhen,Zhao, Chuanzhi,Xia, Han,Hou, Lei,Zhang, Ye,Li, Changsheng,Wang, Xingjun,Wang, Xingjun,Ju, Zheng. 2017

[15]Overexpression of a phytochrome-regulated tandem zinc finger protein gene, OsTZF1, confers hypersensitivity to ABA and hyposensitivity to red light and far-red light in rice seedlings. Zhou, Jinjun,Fan, Zhongxue,Xie, Xianzhi,Zhang, Cheng,Zhou, Jinjun,Fan, Zhongxue,Xie, Xianzhi,Zhang, Cheng,Ma, Huiquan,Zhang, Fang,Chen, Fan. 2012

[16]The abiotic stress-responsive NAC transcription factor SlNAC11 is involved in drought and salt response in tomato (Solanum lycopersicum L.). Lingling Wang,Chen, Guoping,Zongli Hu,Mingku Zhu,Zhiguo Zhu,Jingtao Hu,Ghulam Qanmber,Guoping Chen.

[17]Global analysis of the Gossypium hirsutum L. Transcriptome during leaf senescence by RNA-Seq. Min Lin,Chaoyou Pang,Shuli Fan,Meizhen Song,Hengling Wei,Shuxun Yu. 2015

[18]iTRAQ Protein Profile Differential Analysis between Somatic Globular and Cotyledonary Embryos Reveals Stress, Hormone, and Respiration Involved in Increasing Plant let Regeneration of Gossypium hirsutum L.. Xiaoyang Ge,Chaojun Zhang,Qianhua Wang,Zuoren Yang,Ye Wang,Xueyan Zhang,Zhixia Wu,Yuxia Hou,Jiahe Wu,Fuguang Li.

[19]Highly efficient plant regeneration through somatic embryogenesis in 20 elite commercial cotton (Gossypium hirsutum L.) cultivars. Baohong Zhang,Qinglian Wang,Fang Liu,Kunbo Wang,Taylor P. Frazier. 2009

[20]Comprehensive Genomic Analysis and Expression Profiling of the NOX Gene Families under Abiotic Stresses and Hormones in Plants. Chang, Yan-Li,Miao, Hai,Yang, Shuai-Qi,Li, Ri,Wang, Xiang,Li, Wen-Qiang,Chen, Kun-Ming,Li, Wen-Yan. 2016

作者其他论文 更多>>