Genetic diversity of pepper (Capsicum spp.) germplasm resources in China reflects selection for cultivar types and spatial distribution

文献类型: 外文期刊

第一作者: Zhang Xiao-min

作者: Zhang Xiao-min;Zhang Zheng-hai;Gu Xiao-zhen;Mao Sheng-li;Li Xi-xiang;Wang Li-hao;Zhang Bao-xi;Li Xi-xiang;Chadoeuf, Joel;Palloix, Alain

作者机构:

关键词: Capsicum spp. germplasm collection;genetic diversity;population structure;microsatellite

期刊名称:JOURNAL OF INTEGRATIVE AGRICULTURE ( 影响因子:2.848; 五年影响因子:2.979 )

ISSN: 2095-3119

年卷期: 2016 年 15 卷 9 期

页码:

收录情况: SCI

摘要: Pepper (Capsicum spp.) is an important vegetable crop in the world. Now the pepper in China contributes one-third of the world's peppers production. Genetic diversity of the pepper germplasm of China is expected interesting to know. To explore the structure of genetic diversity in Chinese pepper germplasm resources and possible relationship with cultivar types or geographic origin, we sampled and compared 372 GenBank pepper accessions (local cultivars and landraces) from 31 provinces, autonomous regions and municipalities of China and 31 additional accessions from other countries. These accessions were genotyped using 28 simple sequence repeat (SSR) markers spanning the entire pepper genome. We then investigated the genetic structure of the sampled collection using model-based analysis in STRUCTURE v2.3.4 and examined genetic relationships by the unweighted pair-group method of mathematical averages (UPGMA) in MEGA. In addition to geographic origin, we evaluated eight plant and fruit traits. In total, 363 alleles were amplified using the 28 SSR primers. Gene diversity, polymorphism information content and heterozygosity of the 28 SSR loci were estimated as 0.09-0.92, 0.08-0.92 and 0.01-0.34, respectively. The UPGMA cluster analysis clearly distinguished Capsicum annuum L. from other cultivated pepper species. Population structure analysis of the 368 C. annuum accessions uncovered three genetic groups which also corresponded to distinct cultivar types with respect to the plant and fruit descriptors. The genetic structure was also related to the geographic origin of the landraces. Overall results indicate that genetic diversity of Chinese pepper landraces were structured by migration of genotypes followed by human selection for cultivar types in agreement with consumption modes and adaptation to the highly diversified agro-climatic conditions.

分类号:

  • 相关文献

[1]Genetic diversity and population structure of common bean (Phaseolus vulgaris) landraces from China revealed by a new set of EST-SSR markers. Xu, Shengchun,Hu, Qizan,Liu, Na,Ye, Lingwei,Gong, Yaming,Wang, Guofu,Mao, Weihua.

[2]Genetic variation and population structure of the oriental fruit moth Grapholita molesta in Shanxi, a major pome fruits growing region in North China. Yang, Jing,Liu, Zhong-Fang,Fan, Ji-Qiao,Fan, Ren-Jun,Yang, Jing,Liu, Zhong-Fang,Fan, Ji-Qiao,Fan, Ren-Jun,Wu, Yu-Peng,Ma, Rui-Yan. 2016

[3]Evaluation of genetic diversity and structure of Vietnamese goat populations using multi locus microsatellite markers. Le Thi Thuy,Luu Quang Minh,Tran Thi Thu Thuy,Nguyen Van Ba,Dinh Van Binh,Nguyen Dang Ton,Han, Jian-Lin,Periasamy, Kathiravan.

[4]High polymorphism and moderate differentiation of chub mackerel, Scomber japonicus (Perciformes: Scombridae), along the coast of China revealed by fifteen novel microsatellite markers. Cheng, Qiqun,Zhu, Yuxia,Chen, Xiaoyong.

[5]Genetic diversity and differentiation of Ankole cattle populations in Uganda inferred from microsatellite data. Kugonza, D. R.,Mpairwe, D.,Kiwuwa, G. H.,Kugonza, D. R.,Jianlin, H.,Okeyo, A. M.,Hanotte, O.,Jianlin, H.,Nabasirye, M..

[6]Population structure and conservation genetics of wild rice Oryza rufipogon (Poaceae): a region-wide perspective from microsatellite variation. Gao, LH.

[7]Development of Genic Simple Sequence Repeat Panels for Population Classification of Chinese Cymbidium Species. Li, Xiaobai,Xie, Ming,Jin, Liang,Li, Xiaobai,Li, Weirui,Di, Chenlu,Wu, Dianxing,Huang, Cheng.

[8]Microsatellite analysis reveals the population structure and migration patterns of Scomber japonicus (Scombridae) with continuous distribution in the East and South China Seas. Zeng, Liyan,Cheng, Qiqun,Chen, Xiaoyong.

[9]Microsatellite markers reveal genetic divergence among wild and cultured populations of Chinese sucker Myxocyprinus asiaticus. Cheng, W. W.,Wang, D. Q.,Wang, C. Y.,Du, H.,Wei, Q. W.,Cheng, W. W.. 2016

[10]Isolation and Characterization of New 24 Microsatellite DNA Markers for Golden Cuttlefish (Sepia esculenta). Yuan, Yanjiao,Liu, Shufang,Bai, Cuicui,Liu, Hongbo,Zhuang, Zhimeng,Yuan, Yanjiao,Bai, Cuicui,Liu, Hongbo. 2012

[11]Genetic Variation and Population Structure of the White Rhinoceros. Hou, Guanyu,Zeng, Hongpu,Wang, Dongjin,Zhou, Hanlin. 2012

[12]Analysis of genetic structure and relationship among nine indigenous Chinese chicken populations by the Structure program. Li, H. F.,Han, W.,Zhu, Y. F.,Shu, J. T.,Zhang, X. Y.,Chen, K. W..

[13]Isolation and characterization of new microsatellite markers from the Japanese scallop (Patinopecten yessoensis). Chen, Meng,Chang, Ya-Qing,Ding, Jun,Sun, Xiao-Wen.

[14]Association mapping of yield-related traits and SSR markers in wild soybean (Glycine sofa Sieb. and Zucc.). Hu, Zhenbin,Zhang, Dan,Zhang, Guozheng,Kan, Guizhen,Hong, Delin,Yu, Deyue,Hu, Zhenbin,Zhang, Dan. 2014

[15]Analysis of genetic diversity and population structure in a tomato (Solanum lycopersicum L.) germplasm collection based on single nucleotide polymorphism markers. Wang, T.,Wang, T.,Zou, Q. D.,Qi, S. Y.,Wang, X. F.,Wu, Y. Y.,Zhang, Y. M.,Zhang, Z. J.,Li, H. T.,Liu, N.. 2016

[16]Comparison of SSRs and SNPs in assessment of genetic relatedness in maize. Yang, Xiaohong,Li, Jiansheng,Yan, Jianbing,Xu, Yunbi,Shah, Trushar,Li, Huihui,Han, Zhenhai,Yan, Jianbing.

[17]Microsatellite analysis revealed genetic diversity and population structure among Chinese cashmere goats. Di, R.,Ma, Y. H.,He, X. H.,Zhao, Q. J.,Han, J. L.,Guan, W. J.,Chu, M. X.,Sun, W.,Pu, Y. P.,Vahidi, S. M. Farhad,Han, J. L.,Vahidi, S. M. Farhad.

[18]Genetic Diversity and Population Structure of Elite Foxtail Millet [Setaria italica (L.) P. Beauv.] Germplasm in China. Liu, Zhengli,Bai, Guihua,Zhang, Dadong,Zhu, Chengsong,Liu, Zhengli,Xia, Xueyan,Cheng, Ruhong,Shi, Zhigang,Bai, Guihua.

[19]Investigations on genetic diversity of northern snakehead (Channa argus) populations in China using amplified fragment length polymorphism (AFLP) markers. Zhou, Aiguo,Luo, Junzhi,Zou, Jixing,Zhuo, Xiaolei,Huang, Guiju,Yu, Dahui.

[20]Analysis of genetic diversity and population structure of Pleuronectes yokohamae indicated by AFLP markers. Zhang, Hui,Yu, Han,Zhang, Yan,Zhang, Hui,Gao, Tianxiang,Han, Zhiqiang,Xiao, Yongshuang.

作者其他论文 更多>>