Characterization and function of Tomato yellow leaf curl virus-derived small RNAs generated in tolerant and susceptible tomato varieties

文献类型: 外文期刊

第一作者: Bai Miao

作者: Bai Miao;Yang Guo-shun;Chen Wen-ting;Lin Run-mao;Ling Jiang;Mao Zhen-chuan;Xie Bing-yang

作者机构:

关键词: Tomato yellow leaf curl virus;virus-induced RNA silencing;virus-derived small RNA;degradome

期刊名称:JOURNAL OF INTEGRATIVE AGRICULTURE ( 影响因子:2.848; 五年影响因子:2.979 )

ISSN: 2095-3119

年卷期: 2016 年 15 卷 8 期

页码:

收录情况: SCI

摘要: Virus-tolerant plant, which allows the accumulation of virus and then generates virus-derived small RNAs (vsRNAs), is a valuable material to reveal the antiviral efficiency of vsRNAs. Here, a comparison of vsRNAs in Tomato yellow leaf curl virus tolerant and in susceptible tomato varieties showed the consistent trend of vsRNAs' distribution on virus genome, which is presented as an obvious characteristic. However, the expression level of vsRNA in tolerant variety is less than that in susceptible variety. Slicing targets of vsRNA-mediated viral transcripts were investigated using parallel analysis of RNA ends, and geminivirus DNA methylation was determined by bisulfite sequencing, which uncovered that not all vsRNAs participated in viral mRNA degradation and DNA methylation. Additionally, by comparing with the expression pattern of vsRNAs, viral DNA and mRNA, we proposed the quantity of vsRNAs is corresponding to the expression level of viral mRNA, while the virus-suppression of vsRNAs is not high-efficient.

分类号:

  • 相关文献

[1]Genomic dissection of small RNAs in wild rice (Oryza rufipogon): lessons for rice domestication. Wang, Yu,Bai, Xuefei,Yan, Chenghai,Gui, Yiejie,Fan, Longjiang,Wang, Yu,Bai, Xuefei,Yan, Chenghai,Gui, Yiejie,Fan, Longjiang,Wei, Xinghua,Guo, Longbiao,Zhu, Qian-Hao.

[2]Combined small RNA and degradome sequencing reveals novel miRNAs and their targets in response to low nitrate availability in maize. Zhao, Yongping,Xu, Zhenhua,Mo, Qiaocheng,Zou, Cheng,Li, Wenxue,Xu, Yunbi,Xie, Chuanxiao,Xu, Yunbi,Mo, Qiaocheng,Xu, Zhenhua.

[3]Dual transcriptome analysis reveals insights into the response to Rice black-streaked dwarf virus in maize. Zhou, Yu,Duan, Canxing,Hao, Zhuanfang,Li, Mingshun,Yong, Hongjun,Zhang, Degui,Zhang, Shihuang,Weng, Jianfeng,Li, Xinhai,Zhou, Yu,Xu, Zhennan,Wang, Zhenhua,Chen, Yanping,Meng, Qingchang,Wu, Jirong.

[4]Genome-Wide Characterization of Rice Black Streaked Dwarf Virus-Responsive MicroRNAs in Rice Leaves and Roots by Small RNA and Degradome Sequencing. Sun, Zongtao,He, Yuqing,Li, Junmin,Wang, Xu,Chen, Jianping,He, Yuqing.

[5]Small RNA and Degradome Deep Sequencing Reveals Peanut MicroRNA Roles in Response to Pathogen Infection. Zhao, Chuanzhi,Xia, Han,Zhao, Shuzhen,Hou, Lei,Zhang, Ye,Li, Changsheng,Wang, Xingjun,Zhao, Chuanzhi,Xia, Han,Zhao, Shuzhen,Hou, Lei,Zhang, Ye,Li, Changsheng,Wang, Xingjun,Cao, Tingjie,Zhang, Xinyou,Yang, Yu.

[6]Response of microRNAs to cold treatment in the young spikes of common wheat. Song, Guoqi,Zhang, Rongzhi,Zhang, Shujuan,Li, Yulian,Gao, Jie,Han, Xiaodong,Chen, Mingli,Wang, Jiao,Li, Wei,Li, Genying,Song, Guoqi,Zhang, Rongzhi,Zhang, Shujuan,Li, Yulian,Gao, Jie,Han, Xiaodong,Chen, Mingli,Wang, Jiao,Li, Wei,Li, Genying,Song, Guoqi,Zhang, Rongzhi,Zhang, Shujuan,Li, Yulian,Gao, Jie,Han, Xiaodong,Chen, Mingli,Wang, Jiao,Li, Wei,Li, Genying. 2017

[7]Combined small RNA and degradome sequencing to identify miRNAs and their targets in response to drought in foxtail millet. Wang, Yongqiang,Li, Lin,Diao, Xianmin,Tang, Sha,Zhi, Hui,Jia, Guanqing,Diao, Xianmin,Wang, Yongqiang,Liu, Jianguang,Zhang, Hanshuang. 2016

[8]Genome-Wide Profiling of Small RNAs and Degradome Revealed Conserved Regulations of miRNAs on Auxin-Responsive Genes during Fruit Enlargement in Peaches. Shi, Mengya,Hu, Xiao,Shi, Mengya,Wei, Yu,Liu, Jun,Hou, Xu,Yuan, Xue,Liu, Yueping,Liu, Yueping. 2017

[9]Analyses of a Glycine max Degradome Library Identify microRNA Targets and MicroRNAs that Trigger Secondary SiRNA Biogenesis. Hu, Zheng,Jiang, Qiyan,Ni, Zhiyong,Xu, Shuo,Zhang, Hui,Chen, Rui. 2013

[10]Identification and characterization of miRNAs and targets in flax (Linum usitatissimum) under saline, alkaline, and saline-alkaline stresses. Yu, Ying,Yuan, Hongmei,Guan, Fengzhi,Yu, Ying,Wu, Guangwen,Yuan, Hongmei,Cheng, Lili,Zhao, Dongsheng,Huang, Wengong,Zhang, Shuquan,Zhang, Liguo,Guan, Fengzhi,Chen, Hongyu,Zhang, Jian. 2016

[11]Eugenol enhances the resistance of tomato against tomato yellow leaf curl virus. Wang, Chunmei,Fan, Yongjian,Wang, Chunmei.

[12]Genome-wide identification of Dicer-like, Argonaute and RNA-dependent RNA polymerase gene families and their expression analyses in response to viral infection and abiotic stresses in Solanum lycopersicum. Mao, Zhen-Chuan,Kang, Hou-Xiang,Chen, Guo-Hua,Yang, Yu-Hong,Xie, Bing-Yan,Bai, Miao,Yang, Guo-Shun,Chen, Wen-Ting.

[13]Tomato Yellow Leaf Curl Virus V2 Interacts with Host Histone Deacetylase 6 To Suppress Methylation-Mediated Transcriptional Gene Silencing in Plants. Wang, Bi,Wang, Yaqin,Xie, Yan,Zhou, Xueping,Wang, Bi,Yang, Xiuling,Zhou, Xueping. 2018

[14]Elevated O-3 and TYLCV Infection Reduce the Suitability of Tomato as a Host for the Whitefly Bemisia tabaci. Cui, Hongying,Zhang, Youjun,Cui, Hongying,Sun, Yucheng,Ge, Feng,Chen, Fajun. 2016

[15]Control of Tomato yellow leaf curl virus disease by Enterobacter asburiae BQ9 as a result of priming plant resistance in tomatoes. Li, Hongwei,Ding, Xueling,Wang, Chao,Ke, Hongjiao,Wu, Zhou,Liu, Hongxia,Guo, Jianhua,Li, Hongwei,Wang, Chao,Ke, Hongjiao,Wu, Zhou,Liu, Hongxia,Guo, Jianhua,Ding, Xueling,Wang, Yunpeng. 2016

[16]Assessment of the genetic diversity of tomato yellow leaf curl virus. Wan, H. J.,Wang, R. Q.,Ye, Q. J.,Ruan, M. Y.,Li, Z. M.,Zhou, G. Z.,Yao, Z. P.,Yang, Y. J.,Yuan, W.. 2015

[17]Different effects of exogenous jasmonic acid on preference and performance of viruliferous Bemisia tabaci B and Q. Liu, Yong,Shi, Xiaobin,Pan, Huipeng,Xie, Wen,Wang, Shaoli,Wu, Qingjun,Chen, Gong,Tian, Lixia,Zhang, Youjun,Zhou, Xuguo. 2017

[18]Virus-Infected Plants Altered the Host Selection of Encarsia formosa, a Parasitoid of Whiteflies. Liu, Xin,Zhang, Youjun,Xie, Wen,Wu, Qingjun,Wang, Shaoli,Chen, Gong. 2017

[19]Manipulation of Host Quality and Defense by a Plant Virus Improves Performance of Whitefly Vectors. Su, Qi,Zhou, Xiao Mao,Su, Qi,Xie, Wen,Liu, Bai Ming,Wang, Shao Li,Wu, Qing Jun,Zhang, You Jun,Preisser, Evan L..

[20]Tomato yellow leaf curl virus differentially influences plant defence responses to a vector and a non-vector herbivore. Su, Qi,Wang, Wenkai,Su, Qi,Wang, Shaoli,Chen, Gong,Xie, Wen,Wu, Qingjun,Zhang, Youjun,Mescher, Mark C..

作者其他论文 更多>>